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Abstract

In this paper we deal with the location of extensive facilities on trees, both discrete and continuous,
under the condition that existing facilities are already located. We require that the selected new server
is a subtree, although we also specialize to the case of paths. We study the problem with the two
most widely used criteria in Location Analysis: center and median. Our main results under the center
criterion are nestedness properties of the solution and subquadratic algorithms for the location of
paths and subtrees. For the case of the median criterion we prove that unlike the case where there is
no existing facility, the continuous conditional median subtree problem is NP-hard and we develop a
corresponding fully polynomial approximation algorithm. We also present subquadratic algorithms
for almost all other models.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

In a typical location problem there is a set of demand points embedded in some met-
ric space and the objective is to locate a specified number of servers optimizing some
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criterion, which usually depends on the distances between the demand points and their
respective servers. The criteria mostly considered are the minimization of the average ser-
vice distance or the maximum distance. These criteria are referred to as the median and the
center problems respectively. In many practical situations we already have some servers
located in the underlying space and they provide service to the customers. These servers
can not be relocated. However, sometimes an increased budget is available for establishing
more servers (facilities) to improve service, e.g., decrease service distances. Minieka [18]
has coined the terrconditional location problem for situations where there already exists

a set of servers. (Models with these features already appeared in [21].) Minieka solved the
conditional median and center location problem on networks in the presence of only one
additional center (one point). Several papers dealing with conditional location models have
appeared since then. Most deal with the situation where there is only one existing facility
present. References discussing point-conditional location problems on networks are [4,7,
8,12]. There are also studies in the literature dealing with the point-conditional location
problem in the plane. (See for example, [5,6].)

The papers cited above focus on location problems where a server (facility) is repre-
sented by a point in the metric space. However, in recent years there has been a growing
interest in studying the location of connected structures, which cannot be represented by
(isolated) points in the space. These studies were motivated by concrete decision problems
related to routing and network design. For instance, in order to improve the mobility of the
population and reduce traffic congestion, many existing rapid transit networks are being
updated by extending or adding lines. These lines can be viewed as new facilities, and the
issue of deciding the place of the alignment and the location of stations on a new line, can
be categorized as a conditional extensive facility location problem. Moreover, since the
cost of constructing one unit of length and that of the stations can be estimated, a budget
constraint can be expressed in terms of the total length of the new facility (line). Other
potential applications appear in hierarchical network design such as the case where a high
power transmission or a cable communication network must be extended.

The first studies on location of connected structures (which weextatisive facilities)
appeared in the early eighties [3,13,19,20,22,28]. Hakimi et al. [11] focused on the com-
plexity of solving many versions of location problems of extensive facilities. The different
versions are derived by considering such elements as locating one or several facilities,
whether the facilities are paths or tree shaped, whether the underlying network is a tree or
a general graph, and the objective function used. Researchers have followed the suggested
classification, and improved the results for many of the models listed in [11]. For example
we cite, [1,15,23,24,30,32]. More relevant references are mentioned throughout the paper.

Almost all papers which focus on extensive facilities do not consider the case where
servers (facilities) may already exist. We are aware of only two references which take into
consideration existing facilities. The solution to the problem of locating a path minimizing
the median function in the presence of an existing point-facility not belonging to the path
was applied by Becker and Perl [3] to design an algorithm for the 2-core of a tree. (A 2-core
of a tree is a pair of paths minimizing the sum of the weighted distances from the nodes
of the graph to their respective closest path.) They solve their conditional modghin
time, and find the 2-core i® (n2) time. An improved linear time algorithm for a 2-core of
a tree has been recently presented by Wang [33]0OAnlogn) time algorithm was also
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obtained by Mesa [17] for the conditional path center problem in the pure topological case
(unweighted and equal edge lengths) of a tree. As mentioned above, conditional location
problems of extensive facilities pertain to a realistic class of location problems where a

given extensive facility is already located and one looks for the installation of a new exten-

sive facility without altering the position and shape of the existing one. We require the new

facility to be connected but the two facilities may be disconnected.

In this paper we study conditional location problems on trees where the new facility is
required to be connected. Topologically, the selected server has to be a subtree. We also
specialize to the important case where the connected structure is further restricted to be a
path of the network. We consider discrete and continuous versions of both the center and
the median objectives. Constraints are expressed in terms of total length of the extensive fa-
cility. Comparing our results with those known for the unconditional versions, we note that
our algorithms are more complex. Polynomial complexity is preserved for all models but
one. The continuous unconditional median subtree problem is linearly solvable [29], while
we prove that the respective conditional version is NP-hard. We provide a fully polynomial
time approximation scheme for this model. We also present subquadratic algorithms for
almost all other models.

The paper is organized as follows. In the next section we formally introduce the notation
and the models that we study in the paper. Section 3 is devoted to the conditional center
problem. We prove some nestedness results, showing that the solution to the conditional
model when the new facility is restricted to be a point, is contained in an optimal solution
to the problem of locating an extensive facility of positive length. We use this result to
design efficient algorithms for the latter problem. In Section 4 we study the median model.
We prove the above NP-hardness result and present the approximation algorithm. We also
provide efficient algorithms for the path models.

2. Theconditional subtree/path problem under the size constraint

Let T = (V, E) be an undirected tree network with node $et {v1, ..., v,}. Sup-
pose that the tred is rooted at some distinguished node, say For each node;,
j=223,...,n,let p(v;), the parent ob;, be the node € V, closest tov;, v # v; on
P[vg, v/], the path connecting; to v1. v; is a child of p(v;). We lete; be the edge con-
nectingv; with its parentp(v;). Hence, the edge setB= {es, ..., e,}. If v;, v, are the
two nodes ok, we will also use the notatios; = (v;, vx). A nodew; is a descendant of
vj if v; is on P[v;, v1]. V; will denote the set of all descendantsugt

Each edge;, j =2,3,...,n, has a positive lengtly, and is assumed to be rectifiable.
In particular, an edge; is identified as an interval of lengih so that we can refer to its
interior points. We assume thatis embedded in the Euclidean plane. I47T) denote
the continuum set of points on the edgesTofWe view A(T') as a connected and closed
set which is the union of — 1 intervals. LetP[v;, v;] denote the unique simple path in
A(T) connectingy; andv;.

We refer to interior points on an edge by their Euclidean distances along the edge from
the two nodes of the edge. The edge lengths induce a distance functiofronFor any
pair of pointsx, y € A(T), we letd(x, y) denote the length oP[x, y], the unique simple
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path in A(T) connectingx andy. If x andy belong to the same edge we will refer to
P[x, y] as asubedge or apartial edge. A(T) is a metric space with respect to the above
distance function.

The pathP[x, y] can also be viewed as a collection of edges and at most two subedges
(partial edges)P (x, y) will denote the open path obtained froR{x, y] by deleting the
pointsx, y, and P (x, y] will denote the half open path obtained fraPijx, y] by deleting
the pointx. Also, for any subseY C A(T), andx in A(T) we defined(x,Y) =d(Y, x) =
inf{d(x, y): yeY}. (If Y is empty, we setl(x,Y) = o0.) A subsetY C A(T) is called a
subtree if it is closed and connectddis also viewed as a finite connected collection of
partial edges (closed subintervals), such that the intersection of any pair of distinct partial
edges is empty or is a point ii. We call a subtrediscrete if all its (relative) boundary
points are nodes of . We call a subtreamost discrete if at most one of its (relative)
boundary points is not a node @. If Y is a subtree we define the length or sizeYof
L(Y), to be the sum of the lengths of its complete and partial edges.

In our model the nodes of the tree are viewed as demand points (customers), and each
nodev; € V is associated with a nonnegative weight The set of potential servers con-
sists of subtrees. Specifically, I€tbe a collection of subtrees with the property that each
pointx € A(T) is at least in one element 6f. For example can be the set of all subtrees
(paths).

Let D be a collection of discrete subtrees with the property that eachmod® is at
least in one element db.

We assume that there is a subset of nafleshere centers (servers) are already estab-
lished. For example§ may represent the node set of an existing facility, which by itself
can be a subtree or even a forest. In our models the goal is to minimize some specific
monotone functions of the service distances of the customers to their respective nearest
centers. We establish only one server, a subtrée C (D), with L(Y) < L. Hence, the
service distance of node is min[d(v;, Y), d(vi, S)]. When the subtree is selected fram
we refer to the model as the conditional continuous model, and if it is chosenatis
called the conditional discrete model.dfis empty we call the modelnconditional. We
focus in this paper on two specific objective functions; the two most common in location
theory.

In the conditional ¢-weighted) center problem the objective is to minimize

.....

In the conditional {-weighted) median problem the objective is to minimize

n
Fu(Y)= Z w; min[d(v;, ¥), d(v;, $)].
i=1
If w; =1 for eachw; € V, the above models are called unweighted.

The main goal of this paper is to study conditional extensive location problems. For
comparison purposes we summarize in Tables 1-4 the best known results for the uncon-
ditional and conditional cases, as well as our own results for these models, which are
identified by bold letters. We note that all the algorithmic and complexity results in the
paper refer to the cases wheafeand D, defined above, are either the collections of all
relevant subtrees or the collections of all relevant paths, depending on the case.
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Table 1
Unconditional subtree
Discrete Continuous
Complexity Ref. Complexity Ref.
Median (nestedness property) Weighted NP-hard [11] o) [29]
[19,20,31] Unweighted NP-hard [11] 0(n) [29]
Center (nestedness property) Weighted O(nlogn) O(nlogn) [31]
[19,20,31] Unweighted O(n) [27] O(n) [27]
Bold letters indicate new results in the paper.
Table 2
Conditional subtree
Discrete Continuous
Median Weighted NP-hard [11] NP-hard
Unweighted NP-hard [11] NP-hard
Center Weighted O(nlogn) O(nlogn)
Unweighted O(nlogn) O(nlogn)
Bold letters indicate new results in the paper.
* It follows from the unconditional case.
Table 3
Unconditional path
Discrete Continuous
Complexity  Ref. Complexity Ref.
Median (no nestedness  Unweighted Length O(nlogn) [1] O (nlogna(n)) [1]
property) [19,20] No length  O(n) [22] 0(n) [22]
Weighted Length O(nlogn) [1] O(nlogna(n)) [1]
No length  O(n) [2] 0(n) [2]
Center (nestedness Unweighted Length 0(n) [32,34] 0O@n) [32]
property) [19,20] No length  O(n) [13] 0(n) [13]
Weighted Length O(nlogn) O (nlogn)
Nolength  O(nlogn) O (nlogn)
Bold letters indicate new results in the paper.
Table 4
Conditional path
Discrete Continuous
Weighted median Length O (nlog? n) 0n?)
(no nestedness property) No length O (nlog? n) 0 (nlog?n)
Weighted center Length O(nlogn) O (nlogn)
(nestedness property) No length O(nlogn) O (nlogn)

Bold letters indicate new results in the paper.
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3. Theconditional center subtree/path problem
3.1. Unconditional center problems

3.1.1. Nestedness results for subtree and path center problems on trees
Let L be a nonnegative real number. The unconditional center proble¢h (@) is to
find a subtred’ in C (D), with L(Y) < L, minimizing the objective
max w;d(v;,Y).
i=1,....,n

i=1,...,

We assume without loss of generality that at least two of the node weights are positive.

Lemma 3.1. Let x* be the unique solution to the continuous weighted 1-center problem
onT.Thenfor each L > 0, Y*(L), an optimal solution to the unconditional center problem
on C, contains x*.

Proof. The proof follows from the result in [31] for the more general centdian model. (The
centdian objective function is a convex combination of the sum (median) and maximum
(center) functions.) A simple direct proof for the center problem is as follows.

Let r1 be the optimal solution value to the 1-center problem, i.e., the solution value for
the case wheil = 0. Then, there exist a pair of nodas, v;, such thatw;d (v;, x*) =
w;d(vj,x*) =ry, andx™ is on P[v;, v;]. Let Y e C satisfy L(Y) < L. SinceY is con-
nected, it follows that ifc* is not inY, then

max[w,-d(vi, Y), wid(vj, Y)] > ma){wid(vi,x*), wjd(vj,x*)] =r1.
HenceY is not an optimal solution. O

Lemma 3.2. Let v; be a solution to the discrete weighted 1-center problem on 7. Then
for each L > 0, there exists an optimal solution to the unconditional center problem on D
which contains vy.

Proof. If x*, defined in Lemma 3.1, is a node the result follows from Lemma 3.1. Oth-
erwise, there exists a nodg, such thaty* is in the interior of the edgeévy, v,). Let r]
(r1) denote the optimal value for the discrete (continuous) weighted 1-center problem. We
clearly haver; < r;. Note that ifv; is not a unique solution, then the only other solution
IS v;.

Let Vi, (V; k) be the node set of the connected component containirig ), obtained
from T by removing the edgév, v;).

Let v; satisfyr] = w;d(vk, v;). Sincery < ry, it follows thatv; € V; x. (Otherwise it
would yield the contradiction; = w;d (v;, vi) < w;d (v;, x*) <r1.)

Sincevy is optimal there must be a nodeg € Vi, such thatw;d(v;, v;) > r;. (Oth-
erwise, it would follow that for each nodg € Vi ;, wyd(vs, v;) < r7, and for each node
vs € Vi ik With wg > 0, wyd (vy, vr) < wyd (vy, vg) < ry; implying thato, is a better solution
thanuvy.)

Consider now an optimal solution of length L > 0 in D. Without loss of generality
suppose that its objective value is smaller tharThis implies that’ cannot be contained
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in Vi, since it would implyw;d(v;, Y) > w;d (v;, vx) = r1. Also, Y cannot be contained
in V; x, since it would implyw ;d(v;, Y) > w;d(v;, v;) > r{. Hence, sinc is a discrete
subtree, it must contain the entire edag, v;). O

3.1.2. Algorithms for unconditional center problems

From the above nestedness results we conclude that to solve unconditional, continu-
ous/discrete, subtree/path, weighted center problems with a length constraint on trees,
it is sufficient to solve the rooted versions, where the subtree/path must contain some
distinguished point. For convenience, we suppose without loss of generality that this dis-
tinguished point i1, the root ofT.

The main ingredient in algorithms solving center problems is a feasibility test. Given
a real number, determine whether there exists a subtree/path, rooted, aif length
not exceedind_, such that the weighted distance of each node from the subtree/path is at
mostr. We now show how to perform this test in linear time.

The feasibility test

For eachy; € V definer; =r/w;. If d(v;, v1) > r;, definex; to be the point orP[v;, v1]
satisfyingd (x;, v;) = r;. Otherwise, set; = v1. Also, definey; to be the closest node to
x; on Plv;, x;]. Let X' = {x;: v; € V} andY’ = {y;: v; € V}. Define the subsets of least
elementsX” = {x; € X": ﬂxj # xi,x; € Plxj,v1]}, andY” ={y; e Y": ﬂy.,' # Vi,V €
Plyj, vil}.

It is clear that the test is positive for the continuous subtree (path) problem if and only
if the length of the subtree (path) induced K and the rooty; is at mostL. Similarly,
the test is positive for the discrete subtree (path) problem if and only if the length of the
subtree (path) induced &/’ and the root; is at mostL. (Note that in the case of a path, if
|X"| >2(Y"| > 2), the respective test is negative.) Therefore to obtai@ @) feasibility
test it is sufficient to show how to generaté€ andY” in linear time.

We describe am () procedure for finding(”. Initially, X" is empty.

Select an arbitrary node; of the rooted tree such that all its children are leaves. Let
S(v;) be the set of children of;. If d(v;,v;) <r; for each childv; € S(v;), replacer;
by min[r;, minvieg(vj)[ri —d(vi,v;)]]. Delete all the edge&;, v;), v € S(v;). Proceed
inductively. Otherwise, let;, a child ofv; with d(v;, v;) > r;. Augment the point, to X"”.
Let Ty, ..., T, be the collection of connected components obtained ffobly removing
all edges orP[v;, v1]. (Each componertt, is a subtree rooted at some node, sgy,;) on
P[v;, v1].) Recursively, find the respective subsets of least eleméfits. ., Xg of these
components. Then

X" ={x}U{X] = vja}} U U{X] — v}

Itis clear that the total complexity is linear. The above procedure can easily be modified to
constructr”. (Replacex; by y;, andX7, ..., X7 by Yy, ..., ¥/")

We are now ready to presett(n logn) time algorithms for the different versions of
the unconditional center models. The general approach is to identify a set containing the
optimal solution value, and then use the feasibility test to search for the optimal value in
that set.
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1. For the continuous subtree model we already haveD@mlogn) time algorithm
in [31]. (It works for the more general centdian problem.)

2. A set containing the optimal value for the continuous path model: The optimal value
is an element in the sét = R1 U Ry where

Ry ={w;d(vi,vj): vj € Plvj,vi1l, i, j=1,...,n}
={wi[d(i,v1) —d(vj,vD)]: i, j=1,...,n},
Ro = {[wiw;/(w;i + w)][d(vi,v1) +d(vj,v1) — L]: i, j=1,....n}.

Indeed, ifr ¢ Ry then there must exist a balance between two nedes;. Assume
that the closest nodes to each side of the optimal path(P) = L) arev; andv, and
the distanceg/(P, vy) = y, d(P,v;) = x. Then, the following two linear equations
must hold:

wi (d(i, vp) +y) =w;(d (), v) +x), 1)
L+x+4+y=d(g,v). (2)

The admissible radii are of the form= w; (d(v;, vi) + y). If we substitute (1) and (2)
into this equation we get:

w;(d(vg, v;) — L) — wid(v;, vk)>
wi +w;

r=w; <d(v,~, vx) +

wj
= d(v;, . . (d (g, vi) — L) — w;d(v;,
w,-—i—wj( (i, o) (Wi + wj) + w;j(d(ve, vj) — L) — wid (v, vg))

_ Wit i) —
_W+WWMM)L)

3. For the continuous path model we get@t logn) algorithm by searching over the
setR above. The search over the g&t is described in [31]. The search over the set
Rj is even simpler, and it is described in [16].

4. For the discrete subtree and path models the optimal value is definitely an element in
the setR1, defined above. Therefore these models are also solvabl&itogn) time.

3.2. Conditional center problems

3.2.1. Nestedness results for subtree and path center problems on trees

We will next prove nestedness results, similar to Lemmas 3.1 and 3.2, for the condi-
tional models. Unlike the unconditional case, as illustrated by the next example, for the
conditional model, the nestedness property holds for some solution to the problem with
L =0, but not necessarily for all such solutions.

Example 3.1. Consider 4 points (nodes) on the real litiei, v, v3, v4) = (0,1, 3.1, 4.1).
Suppose thas = {v1, v4}, andw; =1, fori =1, 2, 3, 4. Any point onP[v1, v4] is optimal
for the casd. = 0. However, no point inP[v1, v2] or P[vs, vg] Will satisfy the nestedness
property of Lemma 3.3 whenD< L < 1. The property is satisfied at = 2.05.
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U1 Uz U3 Vg
o . . @

Fig. 1. lllustration of Example 3.1. Big dots represent the conditiona$ set

Lemma 3.3. There exists a solution, y* € A(T), to the conditional continuous weighted
center problem on C with L = 0, such that for any L > O, there is an optimal solution,
Y*(L), to the conditional center problemon C with L(Y*(L)) < L, and y* € Y*(L).

Proof. For each node; letr! = w;d(v;, S). Definer’ = max—_y, ., r/. Suppose without
loss of generality that’ > 0. Let x* € A(T) be an optimal solution to the conditional
continuous weighted center problem 6nwith L = 0, and let-* be the optimal solution
value.

Suppose first that* = r’. Consider the se¥’, consisting of all nodes i such that
r{ =r'. We clearly hav¢V’| > 2. Then without loss of generality* is the optimal solution
for the (unconditional) weighted 1-center problem for the nodés inn particular, there is
a pair of nodes;, v; in V' such thate* is on P[v;, v;1, andw;d (v;, x*) = w;d (v, x*) >
r’. From the argument used in the proof of Lemma 3.1, we conclude that the result holds
for y* = x*.

Suppose now that* < r’. Without loss of generality assume thédt> 0, otherwise, the
result clearly holds. Define the following subsetsiof

V_= {U,‘Z u),'d(vi, S) < r*},
Vo = {vi: wid(vi,S)zr*},
V= {vi: w;d(v;, S) > r*}.

From the fact that* < 7/, it follows thatV, is nonempty. Moreover, the nodeslii are
served bye*. Letr” = max, ey, wid(v;, x*). If " =r*, thenr” > 0. We can now assume
without loss of generality that* is the solution to the weighted 1-center problem for the
nodes inV,. Again, from the argument used in the proof of Lemma 3.1, we conclude that
the result holds fop* = x*. Hence, it is sufficient to consider the case wherel < r*.

Definer; =r*/w;, fori =1,...,n. Let

T"={x € A(T): d(x,v)) <ri, Vv € Vi),

Note that since” < r*, T” is a (neighborhood) subtree with nonempty interior. Moreover,
each boundary point df”, which is not a leaf ofA(T) is at a distance of; from some
nodev; € V..

Assume without loss of generality thet. = {v1, ..., v }. Forr=1,...,k, let

T = {x e A(T): d(x,v) < r,}.

If the intersection of Ty and T” is empty, then there is a boundary poipt
of T”, and a nodev; € V,, such thaty* is on P[vy,v;], and w;d(v;, y*) = r* =
w1 min[d(vy, ¥y*), d(v1, S)]. Therefore, for anyl. > 0, there is an optimal solution to the
conditional center problem o@, with value smaller tham*, only if this solution con-
tains interior points on the subpati®v1, y*] and P[v;, y*]. Hence the boundary point
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y* satisfies the nestedness property in the lemma. The same argument applies when the
intersection off; andT” is a single point (which must be a boundary poin@d. If the
intersection has a nonempty interior, we augmanto V., and updatel’” respectively.

We then proceed by considering the intersectiofofvith 7", etc.

We claim that we must reach a step where the intersectidf} @fith the (updated)
neighborhood subtre€” is either empty or a singleton. (From the above argument this
would conclude the proof.) If this were not the case we would conclude that the intersec-
tion of all neighborhood subtree§ = {x € A(T): d(x,v;) <r;j}, v; € VL UV_, has a
nonempty interior. In particular, there is a point A(T) such thatw;d(v;, x) < r*, for
all v; € V4 U V_, contradicting the optimality of*. O

Remark 3.2.1. The above proof suggests @i logn) algorithm for findingy*. The com-
plexity of the algorithm is determined by the effort to interségz) neighborhoods of a

tree. Each intersection can be performe@itiogr) time, by implementing the formula for
intersection in [9]. The intersection of two neighborhoods is by itself a neighborhood sub-
tree. Its radius can be obtained from the radii of the two given neighborhoods in constant
time. Its center is on the path connecting the centers of the two neighborhoods. Therefore,
it can be found inO (logn) time by using the data structure in [16].

Lemma 3.4. There exists a solution, y* € V, to the conditional discrete weighted center
problemon D with L = 0, such that for any L > 0, thereis an optimal solution, Y*(L), to
the conditional discrete center problemon D with L(Y*(L)) < L, and y* € Y*(L).

Proof. We modify the proof of Lemma 3.3 for the discrete case.

For each node; letr = w;d(v;, S). Definer’ = max_y,.. ,r/. Suppose without loss
of generality that” > 0. Let x* € V be an optimal solution to the conditional discrete
weighted center problem ab with L =0, and letr* be the optimal solution value.

Suppose first that* = r’. Consider the se¥’, consisting of all nodes i such that
r{ =r'. We clearly haveV’| > 2. Then without loss of generality* is an optimal solution
for the discrete weighted 1-center problem for the noddg’ifFrom the argument used in
the proof of Lemma 3.2, we conclude that there is a pair of nodes € V', such that*
is on P[v;, v;], andr’ < w;d(v;, x*), wid (v, x*) > w;d(v;, x*). Moreover, if for some
L > 0, the optimal solution value is smaller theln= r*, then every optimal solution must
contain an edge o®[v;, v;] which is incident tax*. Thus, we conclude that the result
holds fory* = x*.

Suppose now that* < r’. Without loss of generality assume thédt> 0, otherwise, the
result clearly holds. Define the following subsetsiaf

V_= {v,-: w;d(v;, S) < r*},
Vo = {v,-: w;d(v;, S) =r*},
Vi = {U,‘I w;d(v;, S) > r*}.
From the fact that* < r/, it follows that V. is nonempty. Moreover, the nodes

are served by*. Let r” = max,cv, w;id(v;, x*). If ¥ =r*, thenr” > 0. We can now
assume without loss of generality thdtis the solution to the discrete weighted 1-center
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problem for the nodes i,.. Again, from the argument used in the proof of Lemma 3.2,
we conclude that the result holds fot = x*. Hence, it is sufficient to consider the case
where 0< r” < r*.

Definer; =r*/w;, fori =1,...,n. Let

T"={x € A(T): d(x,v;) <ri, Yv; € Vi }.

Note that since” < r*, T” is a (neighborhood) subtree with nonempty interior. Moreover,
each boundary point df”, which is not a leaf ofA(T) is at a distance of; from some
nodev; € V.. (Note that the boundary points &f’ are not necessarily nodes. However,
T” contains the node* in its interior.)

Assume without loss of generality thet. = {v1, ..., v }. Forr =1,... k, let

T = {x e A(T): d(x,v) < r,}.

If the intersection ofTy and T” is empty, then there is a boundary poigt
of T”, and a nodev; € V., such thatz* is on P[v1,v;], and w;d(v;, z*) = r* =
w1min[d (v, z*), d(v1, S)]. (Note thatz* is not necessarily irV/.) Let y* be the clos-
est node t@* on P[v;, z*]. It is now easy to check that for ady> 0, there is an optimal
solution to the conditional center problem @n with value smaller tham*, only if this
solution contains the nodg . The same argument applies when the intersectidn ahd
T" is a single point (which must be some boundary paihipf 7”).

If T” N Ty has a nonempty interior, we distinguish between two cases.

Casel. T” N T contains no node in its interior.
In this casev; is notinT”. Definez* to be the closest (boundary) pointitpin 77, and
proceed as above.

Casell. T” N Ty contains a node in its interior.

In this caseT” N Ty contains a node, say; such thatd(v;, v;) < r;, for eachv; €
V4, and alsad(vy, v;) < r1. We augmenby to V.., and update™” respectively. We then
proceed by considering the intersectiorifgfwith 7", etc.

We claim that we must reach a step where the intersectidf} @fith the (updated)
neighborhood subtreE” contains no node in its interior. (From the above argument this
would conclude the proof.) If this were not the case we would conclude that the intersection
of all neighborhood subtree§ = {x € A(T): d(x,v;) <r;j}, v; € V4 U V_, contains a
node, say ;, such that;d(v;, v;) <r*, forall v; € V; U V_, contradicting the optimality
ofr*. O

Remark 3.2.2. Note that Remark 3.2.1 is also applicable here, so that the point conditional
discrete weighted center problem with a nestedness property can be foond liogn)
time.

3.2.2. Algorithms for conditional center problems
Based on the above nestedness results for the conditional center problems, we conclude
that to solve conditional, continuous/discrete, subtree/path, weighted center problems with
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a length constraint on trees, it is sufficient to consider the rooted versions, where the sub-
tree/path must contain some distinguished point. For convenience, suppose without loss of
generality that this point is;, the root ofT'.

It is easy to modify the feasibility test so that it will correctly resolve the test for the
conditional models. Also, note that sets containing the optimal solution values for the con-
ditional models are obtained by augmenting the®et {w;d(v;, S): v; € V} to the sets
of the respective unconditional models. For example, a set containing the optimal solution
value for the conditional continuous path center proble®iis&) R2 U R’.

In the preprocessing phase we compite= {w;d(v;, S): v; € V} in O(n) time as
follows. Starting from the leaves of the rooted tree, and proceeding recursively to the
root, in linear time we can find, for each node, its distance, say/;, to the clos-
est node ofS in V;. At the end of this phase we already haig, S). In the second
phase we start at the root and proceed recursively to the leaves, compatjng) from
d; andd(p(v;), S) in constant time. (Recall thgi(v;) is the parent ofv;, and there-
fore d(vj, S) = minld;,d(p(v;),S) + d(v;, p(v;))].) Hence, inO(n) time we compute
d(vj, S) for all the nodes.

With the above information we can now mimic the solution approach for the uncon-
ditional models and solve the continuous and discrete conditional modeélsrifogn)
time.

An alternative solution strategy for a conditional model is to reduce it to a respective
unconditional problem irQ (n logn) time.

Using the above notation let denote the optimal value of the conditional model. Let
I=(r{,ry,....r;) be the sorted list of the elements Ri. Our first task is to identify a
pair of consecutive elements in sayr; andr,’ ; such that/" < r* <r/, ;. We perform
a binary search o®’. Select in linear time'/, a median element ak’. Let V' = {v; €
Vi wid(vi, S) <r]}. Thenr* < r/, if and only if there is a subtree (path), whose length
is at mostL, such that the weighted distance of each nod& in V' from the subtree
(path) is at most;’. We can use the above feasibility test (for the unconditional model) on
the nodes iV — V' to resolve this query. We then continue the binary searci®’pand
after O (logn) steps we identify (in0 (nlogn) time), the pair;’, /" ,, for the conditional
continuous (discrete) center problem. To solve the conditional model it is now sufficient
to solve the respective unconditional model only for customefs;ie V: w;d(v;, S) >
rt”+1}. The total effort is clearlyO (nlogn).

4. Theconditional median subtree/path problem

As we see in Table 1, unconditional median subtree problems (with a length constraint)
are NP-hard for the discrete model and linearly solvable in the continuous case. More-
over, fully polynomial time approximation schem&${TAS) for the discrete case are given
in [29]. In this section we show that the conditional subtree median problem is NP-hard
even for the continuous case. We then demonstrate that both the discrete and the con-
tinuous conditional median subtree problems have FPTAS. These algorithms are simple
modifications of the scheme given in [29] for the unconditional discrete case.
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The unconditional and the conditional discrete median path problems are clearly poly-
nomially solvable, since there is only a quadratic number of paths to be considered. Hence,
0 (n®) time algorithms are trivially available for all discrete problems. For the uncondi-
tional case (see Table 3), linear time algorithms are known when the size of the path is
unrestricted. For the case when the length is bounded, a subquadratic algorithm is known
only for the case where all edges have unit length and the node weights are identical [23].
We present subquadratic algorithms for all but one of the median path models.

Before we start the detailed discussion we observe that the continuous conditional me-
dian subtree and path problems are actually “almost” discrete. (See Section 2 for a formal
definition.) Consider an edge;, v;), and letx be a point on the edge. Then for each node
v the function mird (ve, x), d(vk, )] is clearly a concave function on the edgg, v;).

Let P[x, y] be a path of lengtlh connecting a point on (v;, v;) with a pointy on (v, v;).
Suppose that; andv, are onP[x, y]. (To simplify the notation suppose without loss of
generality thatt = d(x,v;) andy =d(y, vy).) Next consider the problem of finding the
continuous pattP, of lengthL, which has one endpoint iw;, v;), the other inv;, v;), and

it minimizes ) ";_; wx min[d (vx, P), d(vx, S)]. From the above this problem reduces to a
minimization of a concave function of the two variablkeandy, subject to the constraint

that each one of them is restricted to an interval and their sum (total length) is constant.
Therefore, we conclude that there is an optimal continuous path where one of its endpoints
is a node. A similar observation clearly holds for an optimal continuous median subtree,
since we can apply the above to any maximal subpath of a given subtree.

The next lemma summarizes the above.

Lemma 4.1. For each L > 0 there is an optimal continuous conditional median subtree
(path) of length L which is almost discrete.

4.1. The conditional median subtree problem

As defined in the introduction above, the conditional\Weighted) median subtree
problem under the size constraint consists of locating a sublree,A(T) such that
L(Y) < L where there exist already servers at the subset of n®d€he demand points
(nodes) are allocated to the closest server, either S minimizing the weighted sum of
the distances. The problem can be formulated as follows:

n
ngvﬂayyzzgwnquwhdewha}
1=

st. L(Y)<L. (CMS)

Imposing that a given node, say must belong td’, this problem admits the following
reformulation
n

min Y w; min[z;, d(v;, )],
YEA) &
iz

n
S.t. lex]‘ <L,
j=2
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(%1 U2 U3 1

Fig. 2. lllustration of Example 4.1. Big dots are the nodes in the conditiondl.set

xj(l—x,-)=0 ifl},':p(vj)7j=2,”.,n7 (3)
Z h(l—x) =z, i=2,...,n, (4)
vk € Plv1,vi]

0<x; <1, j=2,...,n.

(Notice that sinces is known then the termgl(v;, )} can be obtained in a preprocessing
phase and hence can be considered as data. We have already shown in the previous sections
that the effort needed to compute these terms for all nodég#1#3.) In the unconditional

modelS is empty, and the objective is replaced By'_; w;z;. It is shown in [29] that for

the unconditional case constraint (3) can be removed from the formulation. Moreover, this
leads to a linear time algorithm. As illustrated by Example 4.1, this constraint cannot be
removed in the conditional case. (The solution to the relaxed problem does not induce a
connected set oA (T).)

Another desirable property that holds for the unconditional median subtree problem is
nestedness [18,19]: There exists an optimum subtree of any positive length in the uncon-
ditional version of the problem which contains an optimal point solution. Example 4.2
illustrates that this may not hold for the conditional subtree/path model.

Exampled.1.LetT = (V, E) be atree, where the set of nodes and edges are givénby

{v1, v2, v3, v4} @and E = {(v1, v2), (v2, v3), (v3, v4)}. The nodes are points on the real line
with (v1, v2, v3, v4) = (0,5, 10, 15) andw; =1 fori =1, 2, 3, 4. We assume that servers
are already located & = {vp, v3} (see Fig. 2). LetL = 10 be the upper bound of the
length of Y. For any tree of length 10, the minimum objective value that we can obtain
is 5. However, we see that if we select the (disconnected) sef(vy, v2), (vs, va)}, then

the value of the objective function is 0. Thus, connectivity (constraint (3)), must be imposed
in the formulation.

Example 4.2. Consider a tred” = (V, E) whereV = {v1, vz, v3, v4, vs, vg, v7} ANd E =

{(v1, v2), (v2, v3), (V2, va), (V2, US), (U5, V), (Vs, v7)}. The embedding of the nodes in the
plane is given by = (0, 0), v2 = (5,0), v3 = (5,5), v4 = (5, —6), v5 = (25,0), vg =
(30,0), v7 = (35,0). Letw; =1 fori=1,...,7. We assume that servers are already
located atS = {v2, vs} (see Fig. 3). LetL = 16 be the upper bound of the length 1f

The optimal (conditional or§) median point solution consists of locating the facility at
any point of the edgéuvg, v7). However, the optimum subtreeé verifying that L(Y) <

16 is the tree spanned by the set of node¥jo= {v1, vs, v3, v4}. The example can be
easily modified for the case of path facility location. For that case just consider the set

S = {vg, v2, vs}.

In general, problem (CMS) is NP-hard.
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Fig. 3. lllustration of Example 4.2. Big dots are the nodes in the conditiondl.set

Theorem 4.1. The conditional continuous subtree median problem is NP-hard even for
star graphs with all node weights being equal to 1.

Proof. The following partition problem can be reduced to the conditional continuous
subtree model: Given integets, ..., a,, is there a subset of them with sum equal to
A/2, whereA is the sum of all elements. Consider a star tiee- (V, E) with V =
{vo, v1,...,v,} and E = {(vg, v1), ..., (vo, v;)}. The length of(vg, v;) is 24;. Insert an
extra nodey;, at the middle of each edgeyo, v;). The modified star will have2+ 1
nodes, withvg as the center of the star. The existing facility (subtree) will consist of the
edgeqvo, u;), i.e.,S = {vo, u1, ..., u,}. Now let the length of the new tree be

It is now clear that there is an optimal solution to the location problem with vajie
if and only if there is a solution to the above NP-hard partition problem.

4.2. The (1 + ¢)-approximation algorithm

From Table 1 we see that the unconditional median subtree problem is NP-hard for
the discrete model and linearly solvable in the continuous case. Moreover, for the discrete
case Tamir [29] presents &t + ¢)-approximation algorithm. From the above results we
know that in the conditional case even the continuous median subtree problem is NP-hard.
Nevertheless, the fully polynomial approximation scheme in [29] can easily be modified
for both, the discrete and continuous conditional median subtree model versions of problem
(CMS). For the sake of brevity we give only a short description of the modification needed
to obtain such an algorithm for the conditional discrete median subtree problem.

Given an instance of the problem and a positiyéhe algorithm generates i0l(n%/¢)
time, a subtree’ such thatL(Y) < L and F(Y) < (1 + &) F°P' where FP! is the op-
timal solution of problem (CMS). The approach uses the interval partitioning method
of [25]. First of all, we describe a pseudopolynomial time algorithm to solve the origi-
nal problem. This is done using an adaptation of the Left—Right Dynamic Programming
algorithm (L-R algorithm) described in [29] for solving the unconditional discrete prob-
lem. To apply this algorithm to our problem we must replace the dista#i@gsY) by
min[d (v;, Y), d (v, S)].
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To implement this efficiently, we start with the preprocessing, where for eachwmode
we compute

n
Ai = w;min[d(vi.v;).d(v;. 9)].
j=1
We define the following terms. ifv;, v;) is an edge, leV; ; be the set of all nodes; such
thatv; is on the path connecting to v;. Define

aij= Y wpmin[d(v;, v, d (v, S)].

UkEVj,i

It is then clear that

Ai = Z aij,j-

Uj: (U,‘,Uj)EE

We next show how to compute all these termsim |ngn) time. (We note that in the
unconditional case all these terms are computab@(m) time [15]).

4.2.1. An O(nlog?n) algorithm to compute {ai j: (vi,vj) e E}

The algorithm has two phases. In the first phase we compute(ridogn) total time,
all the termsy; ;, wherev; is a child ofv;.

In the second phase we compute(in |ngn) time, all the termsA;, v; € V. With the
information from the first phase we can then also derive all the tefrpswherev; is the
parent ofv;, in additional linear effort.

Phase |. In the previous section we showed how to compute in linear tid@;, S):
vj € V}. For each node;, if d(v;, S) > d(vj, v1), definex; = vy, otherwise, define; to
be the unique point o®[v;, v1] such thatd(v;, x;) =d(v;, S). It is shown in [15], that
these points can be located @ logn) total time. We now use a bottom-up algorithm,
starting at the leaves, to computge; whenv; is a child ofv;.

Suppose that; is the parent ob;. DefinelU; = {v; € V;: xx € P, v;]}, andU; j =
{vk € Vi xx € P(vj, vi]}. Let

W; = Z wr and Wj/ = Z Wk
eV veU;
It is clear that the total effort to compute the ter(g; } and{Wj’.} is linear. Then

aij= Y aji+ Y wi(dk S)—dw,v))

v eS(vj) v el; j
+d(vj, U,’)(Wj — WJ/ — Z wk>.
v €el; j

From the above equation we conclude that the effort to calculatés proportional to
(ISl + Ui, 1). Therefore, in addition to the effort to locate the poiftg} we need
O (n) time to complete Phase I.
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Phasell. In this phase we compute all the terfas } defined above ir0 (nlog? n) time.
(Note that whem; is known we can compuig ;, for the case whep; is a child ofv;, in
O(IS(vy)|) time by the expression; ; = A; — thes(vi) ajy.)

The approach is very similar to the one described in Section 2.3.1 in [15]. It is based on
divide and conquer. First we find in linear time a centroid of the treepgaffrom [16],
we know thatl’ = (V, E) can be decomposed into two subtrgés= (V1 E}) andT? =
(V2,E?), such thatvtu vZ =V, vinv2={(v;}, EYUE?=E, andn, = |V?| <
2n+1)/3,p=1,2.

For each node, define

Blg-: Z Wy m|n[d(vt, vk)7 d(U[,S)],
veVl
B? = Z w, min[d (v;, ve), d(vy, )],

v,eV?2

Cci= Z w, min[d (v;, v), d(vr, 9],
veVl—{v;}

Ci= Y wmin[d(.v).d.9)].

v,EVz—{vj}

Then, for eachy € V1 (vx € V2) we haveAy = B} + C? (Ax = B? + C}). Due to the
symmetry betweeiir 1 and V2, we show only how to compute the terri; } for all nodes
Vg € vi,

We start by computing’? for all v, € V1. Let U = (vi(1), ..., vi(ay)) be the ordering
of the nodes i’ by their distances from the centroig. (v;(1) = v;.) Also define

Vi={v eV% dw.v)>d(v,.9} and C2= Y wd(v.S5).

veV2

For eachy, € V2 — V2 definec; = d(v;, §) — d(v;, v;), and let

W?= (vq(l), cee Uq(n’z))

be the ordering of the nodes ¥ — V2 — {v;} by the keys{c;}. (n) = [VZ — V2 — {v;}].)
The total effort needed to generdté and W2 is clearly dominated by the sorting, and
therefore it isO (nlogn).

From the definition ofU!, we clearly have monotonicityjl?(l) << Cl?n . More-
over, to computefl?(S), fors =1,...,n1, we only need to find the largest index= m(s),
such thatd (vym), vi¢s)) = d(vgem), S). (Note that the latter inequality is equivalent to
d(vj, vis)) = cq(m)- Thereforem(s) is monotone iny.) We have

Clo=C24 > wyrndye), )+ Y wernd Wi, Vies))-
r<m(s) r>m(s)

From the monotonicity ofn(s) it follows that the additional time needed to compute
C,.Z(S) forall s =1,...,n1, is O(n). We conclude that the total time to computg for

all nodesv € V1 is O(nlogn). To computeA, = B} + C2 for all nodesy, € V1 it is
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now sufficient to compute?,} for v € V1. The latter step is done recursively on the tree
71 = (v, EY). (A symmetric procedure is applied to computgfor all v € V2.)

To evaluate the total effort needed &¢z) denote the effort to compute the terfis, }
in a tree withn nodes. From the above discussion we obtain

C(n) < cnlogn + C(n1) + C(np),

whereny +n2=n+1,n1 <2+ 1)/3 andna < 2(n + 1)/3. We conclude that the total
complexity isC (n) = O (nlog?n).

4.2.2. The approximation algorithm

We now briefly describe the pseudopolynomial time algorithm.

Sincewvs is the root of T = (V, E), we letvy, va, ..., v, be a depth-first ordering of the
nodes inV. Let D’ be some known precomputed upper bound for the objective value of
the problem (CMS). For each pdif, 1], let T'[j, ] be the subtree df induced by all the
nodes with indices lower tham; plus the node;, the firsts children ofv; (in order of
index) and all the descendants of thesdildren.

We consider first the rooted version of problem (CMS), where the selected (discrete)
subtree must contain the roet. The L-R algorithm maintains a sorted liS{ j, 7] of pairs
(glj,t,11,1) whereg[/, t,1] is the optimal solution of the problem if'[j, ¢] with length
I <L andg[j,t,1] < D'. (Sinceg is a nonincreasing function dfthe ordering is well
defined). The list only contains nondominated pairs, thus its ord@isin[L, D']). The
optimal value of problem (CMS) is given by the smallest figgt ¢omponent of a pair in
the listG[n, 0].

In [29], it is proved that the time to compute a Ii6{j, ] from a list G[j,t — 1] is
O(min[L, D']). (For this update step we need to add the tefm,,, computed in the pre-
processing, to the first coordinate of each pair in thedit, r — 1]. v;(, is therth child
of v;.) Therefore, the total time to solve the problem by this algorith@ (s min[L, D']).
From the results in Section 3.2.2 we can comput&in logn) time, a value ofD’ that
is at mostn times the optimal value of problem (CMS). Indeed, ¥t be the optimal
solution to the conditional center subtree problem, i.e., the solution to the minimax prob-
lem. Therefore Fy (YY) is clearly ann-approximation for the respective median model,
which is problem (CMS). We have proved above that thispproximation solution can
be found inO (nlogn) time. Thus, problem (CMS) can be solved@{n min[L, n FOPY))
time, whereF°Ptis the optimal value of problem (CMS).

We now sketch the fully polynomial time algorithm. L& := Fy (YY) be then-ap-
proximation given by the minimax solution, i.679 < n FOPt,

Given a positives, we partition the interval0, F°] into [n2/¢] consecutive intervals,
each but possibly the last of lengthF°%/n?].

The approximation algorithm follows the steps of the L-R algorithm. For each pair
it produces a lisH[ j, t] of at most[n?/¢] subtrees. Each subtr&ewill be recorded by the
pair (F(Y), L(Y)). The algorithm terminates with the final lisk[», 0] that corresponds to
the leaf node,,.

The claim is that if F*, L*), associated with the subtr&é&, belongs to the listH [r, 0]
and is such that™ is the smallest coordinate (the first coordinate of the paiis, 1)),
thenY* is a(1 + ¢)-approximation solution, i.e F* < (1 + ) FOPt,



68 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

Considering the (exact) pseudopolynomial algorithm, we note that there ar&dm)y
subproblemg;, ] and listsG[, r]. Tamir [29] proved that if a lisGG[j, ¢] is processed
in the kth step of the algorithm an@F (Y), L(Y)) is one of the entrees of the list which
is relevant for the optimal solution, then it is represented by some(pai in the list
H[j,t] where|F(Y) — F| < ke FO/n? and L(Y) < [. (At each step of the algorithm an
additive error ternz F%/n? is introduced.)

Therefore, for any pai¢F, ) in the list H[n, 0] we have|F — FOPY < ne FO/n?. Since
FO < nF°'we conclude thaF’ < FOPY(1+ ¢).

The above approach gives érn®/s) time algorithm to obtain &1+ )-approximation
solution to problem (CMS), where the selected subtree is rooteg. dthis implies that
the naive implementation to solve the unrooted version should salveted subproblems.
The total complexity would b& (n?/¢).

Again, following [29] there is a better implementation following a divide and conquer
approach. Suppose without loss of generality thas a centroid off . If v1 is notincluded
in the optimal subtree, it is included in a component having at mgatodes. Hence, it
is sufficient to approximate the problem where the optimal subtree must included
then make recursive calls to problems of size at mg&t+ 1. This analysis implies that
the overall effort of obtaining &l + ¢)-approximation for the unrooted version of problem
(CMS) is againO (n3/¢).

4.3. The conditional median path problem

Table 3 summarizes the best known results for unconditional median path problems. For
the problems with a constraint on the length of the path, Alstrup et al. [1] give subquadratic
algorithms. We will next give alternative short descriptions of slightly inferior algorithms
for the sake of completeness. These algorithms use some preprocessing presenting in ear-
lier sections. Then, we extend the algorithms to the conditional cases.

4.3.1. An O(nlogn) algorithmfor the discrete unconditional median path with a length
constraint

We use a divide and conquer approach. First we find, in linear time, a centroid of the
tree, sayv;. From [16], we know thaf” = (V, E) can be decomposed into two subtrees
1= (vl EYandT?= (V2 E?),suchthatluv2=Vv,vinv2={(v;}, E\UE?=E,
andn, =|V?|<2n+1)/3,p=12.

If an optimal path does not contain the centrojdthen it must be included either it
orin T'2. Therefore, we can use a divide and conquer scheme. Find the best path containing
nodes in both/1 — {v;} and v2_ {v;}. Then, recursively find the best path contained in
T1 and the best path contained#is.

We start with a preprocessing phase described in [16], and modified by Frederickson
and Johnson [10]. In this phase we find a centroid decomposition of the tree into a nested
sequence of subtrees. For each subffean this decomposition we compute recursively
and sort the distances from its centroid, sayto all other nodes of”’. The total time
needed for this phase &(nlogn).
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Suppose now that; is a centroid of the original tree. Our task is to find the best path
containing nodes in both* — {v;} andV? — {v;}. For each node, € V! (v € V?) let

A,%: Z wld(vt,P[vj,vk]) (A,%: Z wtd(v,,P[vj,vk]))

vevi v eV?

Note, thatA} (A2) is the sum of the weighted distances of all the nodegir(V2) from
the pathP[v;, v;], connecting the centroid; with v. In linear time we computm,}} and
{A,f}, using the following equations.

If v is @ node adjacent tg on the path connecting the centraigdto v; in v1then,

1 1
Al = Ak — Akt + Al —at k-

Similarly, if v is a node adjacent tg on the path connecting the centraigdto v; in V2
then,

2 2
Al‘ = Ak — ak,, + Al‘ — Clt,](.

LetUl= (viqy) - - - » Vi(ny)) b€ the ordering of the nodes Int by their distances from the
centroidv;. Let U? = (vy(), - - -, V4(np)) b€ the ordering of the nodes ir? by their dis-
tances from the centroid;. In particularv; 1) = vg1) = v;. We are now ready to compute
the best discrete path of length not exceedingrhich contains nodes in bothi! — {v;}
andV?2 — {v;}.

It is sufficient to find, for each nodein U1, the best path, whose length is at mast
which hasv as one of its endpoints. We start with,,). If d(v;, vi(;)) > L, there is no
such path. Otherwise, find the largest index 7 (n1), such thatd (v, (), vi(y)) < L, and
d (Vg (1+1)> Viny)) > L. Set

i) = A +o_min )Aqm’

,,,,,

whereq; ;) is the value of the best path which hag,,) as one of its endpoints. Next we
proceed withv;,, —1y, and find the largest index= ¢ (n1 — 1) such thatl (v, (), vi(n;-1)) <
L, andd (vg(+1), Vi(n;—1)) > L. Itis clear that (n1) <(n1 — 1). We then set

1
it —1) = Ajjpy 1+ _ Min AT

Continuing with v;(,,—2) etc., in linear time we compute all the termg,), for r =
1,...,n1. We conclude that the objective value of the best discrete path of length
not exceedingL which contains nodes in both! — {v;} and I {v;} is given by
minr:l,...,nl Qi(r)-

In the recursive step we now have to find the best path containgd iff'2). (Due
to symmetry we show only how to compute the path containefiin Consider a node
v € V2. If P is some path contained iR, thenw,d (v;, P) = w;d (v;, v;) + wed(vj, P).
Therefore, in order to solve the problem where the path is restrict@d ti is sufficient
to replace the weight of; by >, 2w, remove all the nodes iw2 — (v ;) from T,
and solve the problem on the remaining subtree, T'é. (Of course, we need to add the
constan® _, y2 w.d(v;, v;) to the objective value of the restricted problem, to get the best
objective value amongst all discrete paths containefflin
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To evaluate the total effort needed to solve the problem recursivelg(ietdenote the
effort to compute the unconditional discrete median path of length not excegédimg
tree withn nodes. We obtain

C(n) <cen+C(ny) + Cn2),

whereny +n2=n+1,n1 <2 + 1)/3 andnz < 2(n + 1) /3. We conclude that the total
complexity isC(n) = O (nlogn).

4.3.2. An O(nlog?n) algorithmfor the continuous unconditional median path with a
length constraint

To solve the continuous median path problem we first recall that there is an optimal
path such that one of its endpoints is a node. Using this property we can apply the same
approach used for the discrete path. Given the notation of the previous section, we only
need to show how to find the best path of length not exceetlimhich contains a node in
V1—{v;} (V2 - {v;}), and some point which is nat; in 72 (T1). Due to symmetry we
will consider only the paths which have a nodeiih as one of their endpoints.

Consider the se{tAZ(S)}, s=1,...,n2. Let P be a path with an endpoint at some node
v € V1. Its other endqpoint is at a point ,, on an edgév;, vy,) in T2. (Suppose that; is
on the path connecting,, to the centroidy;.) It is easy to see that the objective value of
the pathP is

Aj+ A?— (A2 — AZ)(d(vi, Xim) /d(vi, vm)).

Hence, the objective value df varies linearly with the location of its endpoinf,, on
(vi, v). Moreover, consider a patR[v;, v;] connecting the centroid; with some leaf
nodev, in V2. If yj,+ is a point on this path, an® is a path withv; € vl andy;; as

its two endpoints, the objective value 8fis a monotone piecewise linear convex func-
tion of the location ofy;; on this path. The breakpoints of this function are the nodes
of P[v;, v]. Specifically, there is a piecewise linear functigy; (y), of a real parame-
ter y, 0< y < d(vj, v;) such that for each node; € vl and a pointx on Plv;j, v;]
satisfyingd(x, v;) = y, the objective value of the patR[vi, x] is A,% + fi.:(). (Note
that f; ;(0) = A? and f; ;(d(vj, v)) = Af—.) For convenience, we extend the definition of
f;.:(y) for all nonnegative values of, by definingf; ;(y) = A,2 forall y > d(v;,v,). Let
V?* be the set of leaves df2. Define

F(y)= min f;,(y).
v, eV 2

Since the total number of breakpoints of all the functiffis;} is at mostuy, it is known
that the total number of breakpoints Bfis at mostO (n2a (n2)), wherea (n2) is the inverse
of the Ackermann function (see [26]). Moreover, the sequence of breakpoiftsaf be
generated ir0 (n2logny) time (see [14]).

We are now ready to compute, for each nege V1, the best path whose length is at
most L, which has one of its endpoints at and the other at some point i, By the
above analysis the objective value of such a path is

A,%—i— F(L —d (v, vj)).
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F(L —d(vt, vj)) can be computed i@ (logny) time by applying a binary search over the
breakpoints off’. We now conclude that i (nlogn) time we can find the best path of
length not exceeding, which contains a node it — {vj} (V2 - {v;}) and some point,
which is notv; in 72 (T1).

As in the previous section we continue recursively with the subtideand 72. To
evaluate the total effort needed to solve the problem recursivelg (et denote the effort
to compute the unconditional continuous median path of length not excekdimg tree
with n nodes. We obtain

C(n) < cnlogn + C(n1) + C(np),

whereny +n2=n+1,n1 <2+ 1)/3 andno < 2(n + 1)/3. We conclude that the total
complexity isC (n) = O (nlog®n).

In the next subsections we describe efficient algorithms for the conditional models. We
start with theO (nlog?n) preprocessing phase, mentioned in the previous section, where
we compute the termig; ;} for all edges(v;, v;).

4.3.3. An O(nlog?n) algorithmfor the conditional median path problemwith no length
constraint

When there is no length constraint, the conditional median path is a path connecting two
leaves of the tree. Indeed, this problem can be solve®i(in time after all the termga; ;)
have already been computed iz log?») time. The approach is similar to that of [2].
Specifically, for each node;, we compute the optimal median path, which baas one of
its endpoints, and is contained ¥. Let B; denote the objective value of such an optimal
path. Then recursively we have the followinguifis a leaf thenB; = A;. Otherwise,

Bi =A; + ngygi)[Bj —aji—aj,;jl

Finally to find the conditional (discrete) optimal median path with no length constraint,
for each node; we compute the best path, which is containedjnand containg;. Let
C; denote the objective value of such a path. Then we have the followingisif leaf then
C; = B;. If v; has only one child then agaify = B;. Suppose thatS(v;)| > 2. Consider
the set{B; —a; j —a;;: v; € S(v;)}. Let j(1) and j(2) be the indices corresponding to
the two smallest entries in this set. Then it is easy to see that

Ci=Ai+Bjw —ajw,—aijo+Bj@ —aj2,—aij2-

The objective value of the conditional optimal median path without length constraint is
then min, <y C;. We therefore conclude that the conditional median path problem without
length constraint can be solved@n log?n) time.

4.3.4. An O(nlog?n) algorithm for the discrete conditional median path problemwith a
length constraint

We show how to adapt thé (nlogn) algorithm from Section 4.3.1, which solves the
respective unconditional model. We assume that all{thg} coefficients have already
been computed. We follow the notation in Section 4.3.1. Suppose now,tish centroid
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of the original tree. Our task is to find the best path containing nodes invtfofeh{vj} and
V2 — {v;}. For each node, € V1 (v € V?) let

Ap=Y_ wemin[d(v;, Plvj, vl), d(v;, S)]

vevi

(Ak_ > weminfd (v, Plvj. vel). d(vt,S)])

v, eV2

Note, thatA} (A2) is the sum of the weighted distances of all the nodegir(V2) from
Plvj,v]U S, whereP[v,, vkl is the path connecting the centravd with v. In linear
time we compute{Ak} and{AZ} using the following equations: Lét; (V2) be the subset

of V1 (V?) consisting of all the nodes adjacent to the centigiéh Vl (V2) Then,

A = Z ajy and A?Z Z aj;.

v,eVJ.l v,eVJ.2
If v, is @ node adjacent tg on the path connecting the centraigdto v; in v1then,
A;L = A]% — ak,, + Al‘ — a,,k.

Similarly, if v, is a node adjacent tg on the path connecting the centraigdto v; in V2
then,

2 2
Al = Ak — Akt + Al —at k-

Using the above expressions we proceed exactly as in Section 4.3.1, and find in linear time
the objective value of the best discrete conditional median path of length not excéeding
which contains nodes in boti! — {v;} andV? — {v;}.

In the recursive step we now have to find the best path contain&d {T'2). (Due to
symmetry we show only how to compute the pattiih) We augment a nodep to V?*
and connect it with an edge to the centrojd We definez; o = A2, and solve the problem
recursively on the augmented tréé. As in Section 4.3.1 the complexity of the recursive
algorithm is O (nlogn). However, in the conditional model the preprocessing phase of
computing{a;, ;} takesO (n log? n) time and determines the total complexity.

4.35. An O (n?) algorithmfor the continuous conditional median path problemwith a
length constraint

At this stage we still do not know how to apply the above divide and conquer approach
to the continuous conditional median path problem. Specifically, it is not clear to us how
to aggregate the data froff? (7'1) into the centroid and decompose the problem into two
“independent” subproblems dft and72.

Instead, we use a direct approach to obtaindgn?) algorithm. Since we know how
to compute the best discrete path of length not exceedlirig O (1 log?n) time, we can
assume, without loss of generality, that there exists an optimal almost discrete path
the continuous problem, whose length is exaét)yand one of its endpoints, sayis not a
node. To obtain a quadratic time algorithm it is sufficient to resiritd a given edge, and
show how to get the best path with one endpoint on this edge in linear time.
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First, we need some preprocessing. For each npdefine
X ={x € A(T): d(v, x) =d (v, 9}

Let X = (J;_; Xx. Note that| X | = O n?). Itis shown in [15] how to compute the points
in X, and locate and sort them on the respective edge8yirf) time. We also compute
and sort the distances from each node to all other nodes. This can also be performed in
0 (n?) time, as shown in [15].

We now consider an individual edge;, v;), and show how to find the best median path
with an endpoint:, on this edge. (To simplify the notation we assume thatd (x, v;).)
Let X; ; denote the sorted list of all points &f on (v;, v;). We also augment the nodes
v; andv; to this list. As above we leV; ; (V;;) be the set of nodes in the connected
component containing; (v;), obtained by removing the edde;, v;). For eachx on
(vi, vj) we define

gij(x)= Y wmin[d(x,v,),d(v, S)].

veV;

As noted,g; ;(x) is a monotone, piecewise linear and concave function with breakpoints
at X; ;. It is clear that inO(n) total time we can computg; ;(y), andg;;(y), for all
y € X; ;. Let x be a point on(v;, v;). It is sufficient to look only at paths of the type
P[vi, x] of length L, wherev, € V; ;. For such a path the objective value is a piece-
wise linear concave function of. Its breakpoints are iX; ;. Similar to the notation in
Section 4.3.4 we defind; ; = Zv,eri w; Min[d (v;, Plvg, v;1), d(vs, $)1. As explained
there, in linear time we can compute’these terms foradl V; ;. The objective value of a
path P[vi, x] is equal toA, ; + g; j (x), whered (vg, v;) +x = L.

Next we letZ; ; = (vk(), - - -, vk, ,)) be the ordering of the nodes Iy ; by their dis-
tances fromv;. (vk1) = vj, andn;; = |V;;|.) Finally, by scanning; ; and the sequence
of breakpointsX; ; we compute inO (n) time the objective values of all paths of length
which have one endpoint ii; ; and the other end ofv;, v;).

We conclude that the total time to solve the continuous conditional median path problem
with a length constraint i® (n2).

5. Final comments

We conjecture that the complexities of the algorithms for the conditional median path
problems presented above can be further improved by using the data structures imple-
mented by Alstrup et al. [1] to solve the unconditional versions of these models. This will
be a subject of future research.
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