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Abstract

In this paper we deal with the location of extensive facilities on trees, both discrete and conti
under the condition that existing facilities are already located. We require that the selected new
is a subtree, although we also specialize to the case of paths. We study the problem with
most widely used criteria in Location Analysis: center and median. Our main results under the
criterion are nestedness properties of the solution and subquadratic algorithms for the loca
paths and subtrees. For the case of the median criterion we prove that unlike the case where
no existing facility, the continuous conditional median subtree problem is NP-hard and we dev
corresponding fully polynomial approximation algorithm. We also present subquadratic algo
for almost all other models.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

In a typical location problem there is a set of demand points embedded in som
ric space and the objective is to locate a specified number of servers optimizing
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criterion, which usually depends on the distances between the demand points an
respective servers. The criteria mostly considered are the minimization of the avera
vice distance or the maximum distance. These criteria are referred to as the median
center problems respectively. In many practical situations we already have some
located in the underlying space and they provide service to the customers. These
can not be relocated. However, sometimes an increased budget is available for esta
more servers (facilities) to improve service, e.g., decrease service distances. Minie
has coined the termconditional location problem for situations where there already exis
a set of servers. (Models with these features already appeared in [21].) Minieka solv
conditional median and center location problem on networks in the presence of on
additional center (one point). Several papers dealing with conditional location model
appeared since then. Most deal with the situation where there is only one existing f
present. References discussing point-conditional location problems on networks a
8,12]. There are also studies in the literature dealing with the point-conditional loc
problem in the plane. (See for example, [5,6].)

The papers cited above focus on location problems where a server (facility) is
sented by a point in the metric space. However, in recent years there has been a g
interest in studying the location of connected structures, which cannot be represen
(isolated) points in the space. These studies were motivated by concrete decision pr
related to routing and network design. For instance, in order to improve the mobility
population and reduce traffic congestion, many existing rapid transit networks are
updated by extending or adding lines. These lines can be viewed as new facilities, a
issue of deciding the place of the alignment and the location of stations on a new lin
be categorized as a conditional extensive facility location problem. Moreover, sinc
cost of constructing one unit of length and that of the stations can be estimated, a
constraint can be expressed in terms of the total length of the new facility (line).
potential applications appear in hierarchical network design such as the case where
power transmission or a cable communication network must be extended.

The first studies on location of connected structures (which we callextensive facilities)
appeared in the early eighties [3,13,19,20,22,28]. Hakimi et al. [11] focused on the
plexity of solving many versions of location problems of extensive facilities. The diffe
versions are derived by considering such elements as locating one or several fa
whether the facilities are paths or tree shaped, whether the underlying network is a
a general graph, and the objective function used. Researchers have followed the su
classification, and improved the results for many of the models listed in [11]. For exa
we cite, [1,15,23,24,30,32]. More relevant references are mentioned throughout the

Almost all papers which focus on extensive facilities do not consider the case w
servers (facilities) may already exist. We are aware of only two references which tak
consideration existing facilities. The solution to the problem of locating a path minim
the median function in the presence of an existing point-facility not belonging to the
was applied by Becker and Perl [3] to design an algorithm for the 2-core of a tree. (A 2
of a tree is a pair of paths minimizing the sum of the weighted distances from the
of the graph to their respective closest path.) They solve their conditional model inO(n)

time, and find the 2-core inO(n2) time. An improved linear time algorithm for a 2-core

a tree has been recently presented by Wang [33]. AnO(n logn) time algorithm was also
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obtained by Mesa [17] for the conditional path center problem in the pure topologica
(unweighted and equal edge lengths) of a tree. As mentioned above, conditional lo
problems of extensive facilities pertain to a realistic class of location problems wh
given extensive facility is already located and one looks for the installation of a new e
sive facility without altering the position and shape of the existing one. We require the
facility to be connected but the two facilities may be disconnected.

In this paper we study conditional location problems on trees where the new faci
required to be connected. Topologically, the selected server has to be a subtree. W
specialize to the important case where the connected structure is further restricted
path of the network. We consider discrete and continuous versions of both the cen
the median objectives. Constraints are expressed in terms of total length of the exten
cility. Comparing our results with those known for the unconditional versions, we note
our algorithms are more complex. Polynomial complexity is preserved for all mode
one. The continuous unconditional median subtree problem is linearly solvable [29],
we prove that the respective conditional version is NP-hard. We provide a fully polyn
time approximation scheme for this model. We also present subquadratic algorith
almost all other models.

The paper is organized as follows. In the next section we formally introduce the no
and the models that we study in the paper. Section 3 is devoted to the conditional
problem. We prove some nestedness results, showing that the solution to the con
model when the new facility is restricted to be a point, is contained in an optimal so
to the problem of locating an extensive facility of positive length. We use this res
design efficient algorithms for the latter problem. In Section 4 we study the median m
We prove the above NP-hardness result and present the approximation algorithm. W
provide efficient algorithms for the path models.

2. The conditional subtree/path problem under the size constraint

Let T = (V ,E) be an undirected tree network with node setV = {v1, . . . , vn}. Sup-
pose that the treeT is rooted at some distinguished node, sayv1. For each nodevj ,
j = 2,3, . . . , n, let p(vj ), the parent ofvj , be the nodev ∈ V , closest tovj , v �= vj on
P [v1, vj ], the path connectingvj to v1. vj is a child ofp(vj ). We letej be the edge con
nectingvj with its parentp(vj ). Hence, the edge set isE = {e2, . . . , en}. If vi, vk are the
two nodes ofej , we will also use the notationej = (vi, vk). A nodevi is a descendant o
vj if vj is onP [vi, v1]. Vj will denote the set of all descendants ofvj .

Each edgeej , j = 2,3, . . . , n, has a positive lengthlj , and is assumed to be rectifiab
In particular, an edgeej is identified as an interval of lengthlj so that we can refer to it
interior points. We assume thatT is embedded in the Euclidean plane. LetA(T ) denote
the continuum set of points on the edges ofT . We viewA(T ) as a connected and clos
set which is the union ofn − 1 intervals. LetP [vi, vj ] denote the unique simple path
A(T ) connectingvi andvj .

We refer to interior points on an edge by their Euclidean distances along the edg
the two nodes of the edge. The edge lengths induce a distance function onA(T ). For any

pair of pointsx, y ∈ A(T ), we letd(x, y) denote the length ofP [x, y], the unique simple
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path inA(T ) connectingx andy. If x andy belong to the same edge we will refer
P [x, y] as asubedge or a partial edge. A(T ) is a metric space with respect to the abo
distance function.

The pathP [x, y] can also be viewed as a collection of edges and at most two sub
(partial edges).P(x, y) will denote the open path obtained fromP [x, y] by deleting the
pointsx, y, andP(x, y] will denote the half open path obtained fromP [x, y] by deleting
the pointx. Also, for any subsetY ⊆ A(T ), andx in A(T ) we defined(x,Y ) = d(Y, x) =
inf{d(x, y): y ∈ Y }. (If Y is empty, we setd(x,Y ) = ∞.) A subsetY ⊆ A(T ) is called a
subtree if it is closed and connected.Y is also viewed as a finite connected collection
partial edges (closed subintervals), such that the intersection of any pair of distinct
edges is empty or is a point inV . We call a subtreediscrete if all its (relative) boundary
points are nodes ofT . We call a subtreealmost discrete if at most one of its (relative
boundary points is not a node ofT . If Y is a subtree we define the length or size ofY ,
L(Y ), to be the sum of the lengths of its complete and partial edges.

In our model the nodes of the tree are viewed as demand points (customers), an
nodevi ∈ V is associated with a nonnegative weightwi . The set of potential servers co
sists of subtrees. Specifically, letC be a collection of subtrees with the property that e
pointx ∈ A(T ) is at least in one element ofC. For example,C can be the set of all subtree
(paths).

Let D be a collection of discrete subtrees with the property that each nodevi ∈ V is at
least in one element ofD.

We assume that there is a subset of nodesS, where centers (servers) are already es
lished. For example,S may represent the node set of an existing facility, which by it
can be a subtree or even a forest. In our models the goal is to minimize some s
monotone functions of the service distances of the customers to their respective
centers. We establish only one server, a subtreeY in C (D), with L(Y ) � L. Hence, the
service distance of nodevi is min[d(vi, Y ), d(vi, S)]. When the subtree is selected fromC
we refer to the model as the conditional continuous model, and if it is chosen fromD, it is
called the conditional discrete model. IfS is empty we call the modelunconditional. We
focus in this paper on two specific objective functions; the two most common in loc
theory.

In the conditional (w-weighted) center problem the objective is to minimize

Fc(Y ) = max
i=1,...,n

wi min
[
d(vi, Y ), d(vi, S)

]
.

In the conditional (w-weighted) median problem the objective is to minimize

Fm(Y ) =
n∑

i=1

wi min
[
d(vi, Y ), d(vi, S)

]
.

If wi = 1 for eachvi ∈ V , the above models are called unweighted.
The main goal of this paper is to study conditional extensive location problems

comparison purposes we summarize in Tables 1–4 the best known results for the
ditional and conditional cases, as well as our own results for these models, whi
identified by bold letters. We note that all the algorithmic and complexity results in
paper refer to the cases whereC andD, defined above, are either the collections of

relevant subtrees or the collections of all relevant paths, depending on the case.
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Table 1
Unconditional subtree

Discrete Continuous

Complexity Ref. Complexity Ref

Median (nestedness property) Weighted NP-hard [11] O(n) [29]
[19,20,31] Unweighted NP-hard [11] O(n) [29]

Center (nestedness property) Weighted O(n logn) O(n logn) [31]
[19,20,31] Unweighted O(n) [27] O(n) [27]

Bold letters indicate new results in the paper.

Table 2
Conditional subtree

Discrete Continuous

Median Weighted NP-hard [11]* NP-hard
Unweighted NP-hard [11]* NP-hard

Center Weighted O(n logn) O(n logn)

Unweighted O(n logn) O(n logn)

Bold letters indicate new results in the paper.
* It follows from the unconditional case.

Table 3
Unconditional path

Discrete Continuous

Complexity Ref. Complexity Ref

Median (no nestedness
property) [19,20]

Unweighted Length O(n logn) [1] O(n lognα(n)) [1]
No length O(n) [22] O(n) [22]

Weighted Length O(n logn) [1] O(n lognα(n)) [1]
No length O(n) [2] O(n) [2]

Center (nestedness
property) [19,20]

Unweighted Length O(n) [32,34] O(n) [32]
No length O(n) [13] O(n) [13]

Weighted Length O(n logn) O(n logn)

No length O(n logn) O(n logn)

Bold letters indicate new results in the paper.

Table 4
Conditional path

Discrete Continuous

Weighted median Length O(n log2 n) O(n2)

(no nestedness property) No length O(n log2 n) O(n log2 n)

Weighted center Length O(n logn) O(n logn)

(nestedness property) No length O(n logn) O(n logn)
Bold letters indicate new results in the paper.
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3. The conditional center subtree/path problem

3.1. Unconditional center problems

3.1.1. Nestedness results for subtree and path center problems on trees
Let L be a nonnegative real number. The unconditional center problem onC (D) is to

find a subtreeY in C (D), with L(Y ) � L, minimizing the objective

max
i=1,...,n

wid(vi, Y ).

We assume without loss of generality that at least two of the node weights are po

Lemma 3.1. Let x∗ be the unique solution to the continuous weighted 1-center problem
on T . Then for each L � 0, Y ∗(L), an optimal solution to the unconditional center problem
on C, contains x∗.

Proof. The proof follows from the result in [31] for the more general centdian model.
centdian objective function is a convex combination of the sum (median) and max
(center) functions.) A simple direct proof for the center problem is as follows.

Let r1 be the optimal solution value to the 1-center problem, i.e., the solution valu
the case whenL = 0. Then, there exist a pair of nodes,vi, vj , such thatwid(vi, x

∗) =
wjd(vj , x

∗) = r1, andx∗ is on P [vi, vj ]. Let Y ∈ C satisfyL(Y ) � L. SinceY is con-
nected, it follows that ifx∗ is not inY , then

max
[
wid(vi, Y ),wjd(vj , Y )

]
> max

[
wid

(
vi, x

∗),wjd
(
vj , x

∗)] = r1.

HenceY is not an optimal solution. �
Lemma 3.2. Let vk be a solution to the discrete weighted 1-center problem on T . Then
for each L � 0, there exists an optimal solution to the unconditional center problem on D

which contains vk .

Proof. If x∗, defined in Lemma 3.1, is a node the result follows from Lemma 3.1.
erwise, there exists a nodevt , such thatx∗ is in the interior of the edge(vk, vt ). Let r ′

1
(r1) denote the optimal value for the discrete (continuous) weighted 1-center proble
clearly haver1 < r ′

1. Note that ifvk is not a unique solution, then the only other solut
is vt .

Let Vk,t (Vt,k) be the node set of the connected component containingvk (vt ), obtained
from T by removing the edge(vk, vt ).

Let vi satisfy r ′
1 = wid(vk, vi). Sincer1 < r ′

1, it follows that vi ∈ Vt,k . (Otherwise it
would yield the contradictionr ′

1 = wid(vi, vk) < wid(vi, x
∗) � r1.)

Sincevk is optimal there must be a nodevj ∈ Vk,t such thatwjd(vj , vt ) � r ′
1. (Oth-

erwise, it would follow that for each nodevs ∈ Vk,t , wsd(vs, vt ) < r ′
1, and for each nod

vs ∈ Vt,k with ws > 0,wsd(vs, vt ) < wsd(vs, vk) � r ′
1; implying thatvt is a better solution

thanvk .)
Consider now an optimal solutionY of lengthL > 0 in D. Without loss of generality
suppose that its objective value is smaller thanr ′
1. This implies thatY cannot be contained
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in Vk,t since it would implywid(vi, Y ) � wid(vi, vk) = r ′
1. Also, Y cannot be containe

in Vt,k , since it would implywjd(vj , Y ) � wjd(vj , vt ) � r ′
1. Hence, sinceY is a discrete

subtree, it must contain the entire edge(vk, vt ). �
3.1.2. Algorithms for unconditional center problems

From the above nestedness results we conclude that to solve unconditional, c
ous/discrete, subtree/path, weighted center problems with a length constraint on
it is sufficient to solve the rooted versions, where the subtree/path must contain
distinguished point. For convenience, we suppose without loss of generality that th
tinguished point isv1, the root ofT .

The main ingredient in algorithms solving center problems is a feasibility test. G
a real numberr , determine whether there exists a subtree/path, rooted atv1, of length
not exceedingL, such that the weighted distance of each node from the subtree/pat
mostr . We now show how to perform this test in linear time.

The feasibility test

For eachvi ∈ V defineri = r/wi . If d(vi, v1) > ri , definexi to be the point onP [vi, v1]
satisfyingd(xi, vi) = ri . Otherwise, setxi = v1. Also, defineyi to be the closest node t
xi on P [vi, xi]. Let X′ = {xi : vi ∈ V } andY ′ = {yi : vi ∈ V }. Define the subsets of lea
elementsX′′ = {xi ∈ X′: �xj �= xi, xi ∈ P [xj , v1]}, andY ′′ = {yi ∈ Y ′: �yj �= yi, yi ∈
P [yj , v1]}.

It is clear that the test is positive for the continuous subtree (path) problem if and
if the length of the subtree (path) induced byX′′ and the rootv1 is at mostL. Similarly,
the test is positive for the discrete subtree (path) problem if and only if the length o
subtree (path) induced byY ′′ and the rootv1 is at mostL. (Note that in the case of a path,
|X′′| > 2 (|Y ′′| > 2), the respective test is negative.) Therefore to obtain anO(n) feasibility
test it is sufficient to show how to generateX′′ andY ′′ in linear time.

We describe anO(n) procedure for findingX′′. Initially, X′′ is empty.
Select an arbitrary nodevj of the rooted tree such that all its children are leaves.

S(vj ) be the set of children ofvj . If d(vi, vj ) � ri for each childvi ∈ S(vj ), replacerj
by min[rj ,minvi∈S(vj )[ri − d(vi, vj )]]. Delete all the edges(vi, vj ), vi ∈ S(vj ). Proceed
inductively. Otherwise, letvt , a child ofvj with d(vt , vj ) > rt . Augment the pointxt to X′′.
Let T1, . . . , Tq be the collection of connected components obtained fromT by removing
all edges onP [vt , v1]. (Each componentTm is a subtree rooted at some node, sayvj (m) on
P [vt , v1].) Recursively, find the respective subsets of least elementsX′′

1, . . . ,X′′
q of these

components. Then

X′′ = {xt } ∪ {
X′′

1 − {vj (1)}
} ∪ · · · ∪ {

X′′
q − {vj (q)}

}
.

It is clear that the total complexity is linear. The above procedure can easily be modi
constructY ′′. (Replacext by yt , andX′′

1, . . . ,X′′
q by Y ′′

1 , . . . , Y ′′
q .)

We are now ready to presentO(n logn) time algorithms for the different versions
the unconditional center models. The general approach is to identify a set contain
optimal solution value, and then use the feasibility test to search for the optimal va

that set.
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1. For the continuous subtree model we already have anO(n logn) time algorithm
in [31]. (It works for the more general centdian problem.)

2. A set containing the optimal value for the continuous path model: The optimal
is an element in the setR = R1 ∪ R2 where

R1 = {
wid(vi, vj ): vj ∈ P [vi, v1], i, j = 1, . . . , n

}
= {

wi

[
d(vi, v1) − d(vj , v1)

]
: i, j = 1, . . . , n

}
,

R2 = {[
wiwj/(wi + wj)

][
d(vi, v1) + d(vj , v1) − L

]
: i, j = 1, . . . , n

}
.

Indeed, ifr /∈ R1 then there must exist a balance between two nodesvi , vj . Assume
that the closest nodes to each side of the optimal pathP (L(P ) = L) arevk andvt and
the distancesd(P, vk) = y, d(P, vt ) = x. Then, the following two linear equation
must hold:

wi

(
d(vi, vk) + y

) = wj

(
d(vj , vt ) + x

)
, (1)

L + x + y = d(vk, vt ). (2)

The admissible radii are of the formr = wi(d(vi, vk)+ y). If we substitute (1) and (2
into this equation we get:

r = wi

(
d(vi, vk) + wj(d(vk, vj ) − L) − wid(vi, vk)

wi + wj

)

= wi

wi + wj

(
d(vi, vk)(wi + wj) + wj

(
d(vk, vj ) − L

) − wid(vi, vk)
)

= wiwj

wi + wj

(
d(vi, vj ) − L

)
.

3. For the continuous path model we get anO(n logn) algorithm by searching over th
setR above. The search over the setR2 is described in [31]. The search over the
R1 is even simpler, and it is described in [16].

4. For the discrete subtree and path models the optimal value is definitely an elem
the setR1, defined above. Therefore these models are also solvable inO(n logn) time.

3.2. Conditional center problems

3.2.1. Nestedness results for subtree and path center problems on trees
We will next prove nestedness results, similar to Lemmas 3.1 and 3.2, for the c

tional models. Unlike the unconditional case, as illustrated by the next example, f
conditional model, the nestedness property holds for some solution to the problem
L = 0, but not necessarily for all such solutions.

Example 3.1. Consider 4 points (nodes) on the real line:(v1, v2, v3, v4) = (0,1,3.1,4.1).
Suppose thatS = {v1, v4}, andwi = 1, for i = 1,2,3,4. Any point onP [v1, v4] is optimal
for the caseL = 0. However, no point inP [v1, v2] or P [v3, v4] will satisfy the nestednes

∗
property of Lemma 3.3 when 0.1< L < 1. The property is satisfied aty = 2.05.
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Fig. 1. Illustration of Example 3.1. Big dots represent the conditional setS.

Lemma 3.3. There exists a solution, y∗ ∈ A(T ), to the conditional continuous weighted
center problem on C with L = 0, such that for any L � 0, there is an optimal solution,
Y ∗(L), to the conditional center problem on C with L(Y ∗(L)) � L, and y∗ ∈ Y ∗(L).

Proof. For each nodevi let r ′
i = wid(vi, S). Definer ′ = maxi=1,...,n r ′

i . Suppose withou
loss of generality thatr ′ > 0. Let x∗ ∈ A(T ) be an optimal solution to the condition
continuous weighted center problem onC with L = 0, and letr∗ be the optimal solution
value.

Suppose first thatr∗ = r ′. Consider the setV ′, consisting of all nodes inV such that
r ′
i = r ′. We clearly have|V ′| � 2. Then without loss of generalityx∗ is the optimal solution

for the (unconditional) weighted 1-center problem for the nodes inV ′. In particular, there is
a pair of nodesvi, vj in V ′ such thatx∗ is onP [vi, vj ], andwid(vi, x

∗) = wjd(vj , x
∗) �

r ′. From the argument used in the proof of Lemma 3.1, we conclude that the result
for y∗ = x∗.

Suppose now thatr∗ < r ′. Without loss of generality assume thatr∗ > 0, otherwise, the
result clearly holds. Define the following subsets ofV .

V− = {
vi : wid(vi, S) < r∗},

V= = {
vi : wid(vi, S) = r∗},

V+ = {
vi : wid(vi, S) > r∗}.

From the fact thatr∗ < r ′, it follows thatV+ is nonempty. Moreover, the nodes inV+ are
served byx∗. Let r ′′ = maxvi∈V+ wid(vi, x

∗). If r ′′ = r∗, thenr ′′ > 0. We can now assum
without loss of generality thatx∗ is the solution to the weighted 1-center problem for
nodes inV+. Again, from the argument used in the proof of Lemma 3.1, we conclude
the result holds fory∗ = x∗. Hence, it is sufficient to consider the case where 0� r ′′ < r∗.

Defineri = r∗/wi , for i = 1, . . . , n. Let

T ′′ = {
x ∈ A(T ): d(x, vi) � ri , ∀vi ∈ V+

}
.

Note that sincer ′′ < r∗, T ′′ is a (neighborhood) subtree with nonempty interior. Moreo
each boundary point ofT ′′, which is not a leaf ofA(T ) is at a distance ofri from some
nodevi ∈ V+.

Assume without loss of generality thatV= = {v1, . . . , vk}. For t = 1, . . . , k, let

Tt = {
x ∈ A(T ): d(x, vt ) � rt

}
.

If the intersection ofT1 and T ′′ is empty, then there is a boundary pointy∗
of T ′′, and a nodevi ∈ V+, such thaty∗ is on P [v1, vi], and wid(vi, y

∗) = r∗ =
w1 min[d(v1, y

∗), d(v1, S)]. Therefore, for anyL > 0, there is an optimal solution to th
conditional center problem onC, with value smaller thanr∗, only if this solution con-

tains interior points on the subpathsP [v1, y

∗] andP [vi, y
∗]. Hence the boundary point
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y∗ satisfies the nestedness property in the lemma. The same argument applies w
intersection ofT1 andT ′′ is a single point (which must be a boundary point ofT ′′). If the
intersection has a nonempty interior, we augmentv1 to V+, and updateT ′′ respectively.
We then proceed by considering the intersection ofT2 with T ′′, etc.

We claim that we must reach a step where the intersection ofTt with the (updated)
neighborhood subtreeT ′′ is either empty or a singleton. (From the above argument
would conclude the proof.) If this were not the case we would conclude that the inte
tion of all neighborhood subtreesTi = {x ∈ A(T ): d(x, vi) � ri}, vi ∈ V+ ∪ V=, has a
nonempty interior. In particular, there is a pointx ∈ A(T ) such thatwid(vi, x) < r∗, for
all vi ∈ V+ ∪ V=, contradicting the optimality ofr∗. �
Remark 3.2.1. The above proof suggests anO(n logn) algorithm for findingy∗. The com-
plexity of the algorithm is determined by the effort to intersectO(n) neighborhoods of a
tree. Each intersection can be performed inO(logn) time, by implementing the formula fo
intersection in [9]. The intersection of two neighborhoods is by itself a neighborhood
tree. Its radius can be obtained from the radii of the two given neighborhoods in co
time. Its center is on the path connecting the centers of the two neighborhoods. The
it can be found inO(logn) time by using the data structure in [16].

Lemma 3.4. There exists a solution, y∗ ∈ V , to the conditional discrete weighted center
problem on D with L = 0, such that for any L � 0, there is an optimal solution, Y ∗(L), to
the conditional discrete center problem on D with L(Y ∗(L)) � L, and y∗ ∈ Y ∗(L).

Proof. We modify the proof of Lemma 3.3 for the discrete case.
For each nodevi let r ′

i = wid(vi, S). Definer ′ = maxi=1,...,n r ′
i . Suppose without los

of generality thatr ′ > 0. Let x∗ ∈ V be an optimal solution to the conditional discre
weighted center problem onD with L = 0, and letr∗ be the optimal solution value.

Suppose first thatr∗ = r ′. Consider the setV ′, consisting of all nodes inV such that
r ′
i = r ′. We clearly have|V ′| � 2. Then without loss of generalityx∗ is an optimal solution

for the discrete weighted 1-center problem for the nodes inV ′. From the argument used
the proof of Lemma 3.2, we conclude that there is a pair of nodesvi, vj ∈ V ′, such thatx∗
is on P [vi, vj ], andr ′ � wid(vi, x

∗), wid(vi, x
∗) � wjd(vj , x

∗). Moreover, if for some
L > 0, the optimal solution value is smaller thanr ′ = r∗, then every optimal solution mu
contain an edge onP [vi, vj ] which is incident tox∗. Thus, we conclude that the resu
holds fory∗ = x∗.

Suppose now thatr∗ < r ′. Without loss of generality assume thatr∗ > 0, otherwise, the
result clearly holds. Define the following subsets ofV .

V− = {
vi : wid(vi, S) < r∗},

V= = {
vi : wid(vi, S) = r∗},

V+ = {
vi : wid(vi, S) > r∗}.

From the fact thatr∗ < r ′, it follows thatV+ is nonempty. Moreover, the nodes inV+
are served byx∗. Let r ′′ = maxvi∈V+ wid(vi, x

∗). If r ′′ = r∗, thenr ′′ > 0. We can now

assume without loss of generality thatx∗ is the solution to the discrete weighted 1-center
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problem for the nodes inV+. Again, from the argument used in the proof of Lemma 3
we conclude that the result holds fory∗ = x∗. Hence, it is sufficient to consider the ca
where 0� r ′′ < r∗.

Defineri = r∗/wi , for i = 1, . . . , n. Let

T ′′ = {
x ∈ A(T ): d(x, vi) � ri , ∀vi ∈ V+

}
.

Note that sincer ′′ < r∗, T ′′ is a (neighborhood) subtree with nonempty interior. Moreo
each boundary point ofT ′′, which is not a leaf ofA(T ) is at a distance ofri from some
nodevi ∈ V+. (Note that the boundary points ofT ′′ are not necessarily nodes. Howev
T ′′ contains the nodex∗ in its interior.)

Assume without loss of generality thatV= = {v1, . . . , vk}. For t = 1, . . . , k, let

Tt = {
x ∈ A(T ): d(x, vt ) � rt

}
.

If the intersection ofT1 and T ′′ is empty, then there is a boundary pointz∗
of T ′′, and a nodevi ∈ V+, such thatz∗ is on P [v1, vi], and wid(vi, z

∗) = r∗ =
w1 min[d(v1, z

∗), d(v1, S)]. (Note thatz∗ is not necessarily inV .) Let y∗ be the clos-
est node toz∗ on P [vi, z

∗]. It is now easy to check that for anyL > 0, there is an optima
solution to the conditional center problem onC, with value smaller thanr∗, only if this
solution contains the nodey∗. The same argument applies when the intersection ofT1 and
T ′′ is a single point (which must be some boundary point,z∗ of T ′′).

If T ′′ ∩ T1 has a nonempty interior, we distinguish between two cases.

Case I. T ′′ ∩ T1 contains no node in its interior.
In this casev1 is not inT ′′. Definez∗ to be the closest (boundary) point tov1 in T ′′, and

proceed as above.

Case II. T ′′ ∩ T1 contains a node in its interior.
In this caseT ′′ ∩ T1 contains a node, sayvj such thatd(vi, vj ) < ri , for eachvi ∈

V+, and alsod(v1, vj ) < r1. We augmentv1 to V+, and updateT ′′ respectively. We then
proceed by considering the intersection ofT2 with T ′′, etc.

We claim that we must reach a step where the intersection ofTt with the (updated)
neighborhood subtreeT ′′ contains no node in its interior. (From the above argument
would conclude the proof.) If this were not the case we would conclude that the inters
of all neighborhood subtreesTi = {x ∈ A(T ): d(x, vi) � ri}, vi ∈ V+ ∪ V=, contains a
node, sayvj , such thatwid(vi, vj ) < r∗, for all vi ∈ V+ ∪V=, contradicting the optimality
of r∗. �
Remark 3.2.2. Note that Remark 3.2.1 is also applicable here, so that the point condi
discrete weighted center problem with a nestedness property can be found inO(n logn)

time.

3.2.2. Algorithms for conditional center problems
Based on the above nestedness results for the conditional center problems, we c
that to solve conditional, continuous/discrete, subtree/path, weighted center problems with
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a length constraint on trees, it is sufficient to consider the rooted versions, where th
tree/path must contain some distinguished point. For convenience, suppose without
generality that this point isv1, the root ofT .

It is easy to modify the feasibility test so that it will correctly resolve the test for
conditional models. Also, note that sets containing the optimal solution values for the
ditional models are obtained by augmenting the setR′ = {wid(vi, S): vi ∈ V } to the sets
of the respective unconditional models. For example, a set containing the optimal so
value for the conditional continuous path center problem isR1 ∪ R2 ∪ R′.

In the preprocessing phase we computeR′ = {wid(vi, S): vi ∈ V } in O(n) time as
follows. Starting from the leaves of the rooted tree, and proceeding recursively
root, in linear time we can find, for each nodevj , its distance, saydj , to the clos-
est node ofS in Vj . At the end of this phase we already haved(v1, S). In the second
phase we start at the root and proceed recursively to the leaves, computingd(vj , S) from
dj and d(p(vj ), S) in constant time. (Recall thatp(vj ) is the parent ofvj , and there-
fore d(vj , S) = min[dj , d(p(vj ), S) + d(vj ,p(vj ))].) Hence, inO(n) time we compute
d(vj , S) for all the nodes.

With the above information we can now mimic the solution approach for the un
ditional models and solve the continuous and discrete conditional models inO(n logn)

time.
An alternative solution strategy for a conditional model is to reduce it to a respe

unconditional problem inO(n logn) time.
Using the above notation letr∗ denote the optimal value of the conditional model.

I = (r ′′
1 , r ′′

2 , . . . , r ′′
n ) be the sorted list of the elements inR′. Our first task is to identify a

pair of consecutive elements inI , sayr ′′
t andr ′′

t+1 such thatr ′′
t < r∗ � r ′′

t+1. We perform
a binary search onR′. Select in linear timer ′′

s , a median element ofR′. Let V ′ = {vi ∈
V : wid(vi, S) � r ′′

s }. Thenr∗ � r ′′
s , if and only if there is a subtree (path), whose len

is at mostL, such that the weighted distance of each node inV − V ′ from the subtree
(path) is at mostr ′′

s . We can use the above feasibility test (for the unconditional mode
the nodes inV − V ′ to resolve this query. We then continue the binary search, onR′, and
afterO(logn) steps we identify (inO(n logn) time), the pairr ′′

t , r ′′
t+1, for the conditional

continuous (discrete) center problem. To solve the conditional model it is now suffi
to solve the respective unconditional model only for customers in{vi ∈ V : wid(vi, S) �
r ′′
t+1}. The total effort is clearlyO(n logn).

4. The conditional median subtree/path problem

As we see in Table 1, unconditional median subtree problems (with a length cons
are NP-hard for the discrete model and linearly solvable in the continuous case.
over, fully polynomial time approximation schemes (FPTAS) for the discrete case are give
in [29]. In this section we show that the conditional subtree median problem is NP
even for the continuous case. We then demonstrate that both the discrete and t
tinuous conditional median subtree problems have FPTAS. These algorithms are

modifications of the scheme given in [29] for the unconditional discrete case.



62 A. Tamir et al. / Journal of Algorithms 56 (2005) 50–75

poly-
Hence,
ndi-
ath is
known

al [23].

al me-
formal
de

of
e

o a
t
stant.
points

btree,

e

s
f

g

The unconditional and the conditional discrete median path problems are clearly
nomially solvable, since there is only a quadratic number of paths to be considered.
O(n3) time algorithms are trivially available for all discrete problems. For the unco
tional case (see Table 3), linear time algorithms are known when the size of the p
unrestricted. For the case when the length is bounded, a subquadratic algorithm is
only for the case where all edges have unit length and the node weights are identic
We present subquadratic algorithms for all but one of the median path models.

Before we start the detailed discussion we observe that the continuous condition
dian subtree and path problems are actually “almost” discrete. (See Section 2 for a
definition.) Consider an edge(vi, vj ), and letx be a point on the edge. Then for each no
vk the function min[d(vk, x), d(vk, S)] is clearly a concave function on the edge(vi, vj ).
Let P [x, y] be a path of lengthL connecting a pointx on(vi, vj ) with a pointy on(vs, vt ).
Suppose thatvj andvs are onP [x, y]. (To simplify the notation suppose without loss
generality thatx = d(x, vj ) andy = d(y, vs).) Next consider the problem of finding th
continuous pathP , of lengthL, which has one endpoint in(vi, vj ), the other in(vs, vt ), and
it minimizes

∑n
k=1 wk min[d(vk,P ), d(vk, S)]. From the above this problem reduces t

minimization of a concave function of the two variablesx andy, subject to the constrain
that each one of them is restricted to an interval and their sum (total length) is con
Therefore, we conclude that there is an optimal continuous path where one of its end
is a node. A similar observation clearly holds for an optimal continuous median su
since we can apply the above to any maximal subpath of a given subtree.

The next lemma summarizes the above.

Lemma 4.1. For each L � 0 there is an optimal continuous conditional median subtree
(path) of length L which is almost discrete.

4.1. The conditional median subtree problem

As defined in the introduction above, the conditional (w-weighted) median subtre
problem under the size constraint consists of locating a subtree,Y ⊆ A(T ) such that
L(Y ) � L where there exist already servers at the subset of nodesS. The demand point
(nodes) are allocated to the closest server, eitherY or S minimizing the weighted sum o
the distances. The problem can be formulated as follows:

min
Y⊆A(T )

Fm(Y ) :=
n∑

i=1

wi min
[
d(vi, Y ), d(vi, S)

]
,

s.t. L(Y ) � L. (CMS)

Imposing that a given node, sayv1 must belong toY , this problem admits the followin
reformulation

min
Y⊆A(T )

n∑
i=1

wi min
[
zi, d(vi, S)

]
,

s.t.
n∑

lj xj � L,
j=2
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Fig. 2. Illustration of Example 4.1. Big dots are the nodes in the conditional setS.

xj (1− xi) = 0 if vi = p(vj ), j = 2, . . . , n, (3)∑
vk∈P [v1,vi ]

lk(1− xk) = zi, i = 2, . . . , n, (4)

0� xj � 1, j = 2, . . . , n.

(Notice that sinceS is known then the terms{d(vi, S)} can be obtained in a preprocessi
phase and hence can be considered as data. We have already shown in the previous
that the effort needed to compute these terms for all nodes isO(n).) In the unconditiona
modelS is empty, and the objective is replaced by

∑n
i=1 wizi . It is shown in [29] that for

the unconditional case constraint (3) can be removed from the formulation. Moreove
leads to a linear time algorithm. As illustrated by Example 4.1, this constraint cann
removed in the conditional case. (The solution to the relaxed problem does not ind
connected set ofA(T ).)

Another desirable property that holds for the unconditional median subtree prob
nestedness [18,19]: There exists an optimum subtree of any positive length in the
ditional version of the problem which contains an optimal point solution. Example
illustrates that this may not hold for the conditional subtree/path model.

Example 4.1. Let T = (V ,E) be a tree, where the set of nodes and edges are given byV =
{v1, v2, v3, v4} andE = {(v1, v2), (v2, v3), (v3, v4)}. The nodes are points on the real li
with (v1, v2, v3, v4) = (0,5,10,15) andwi = 1 for i = 1,2,3,4. We assume that serve
are already located atS = {v2, v3} (see Fig. 2). LetL = 10 be the upper bound of th
length ofY . For any tree of length 10, the minimum objective value that we can ob
is 5. However, we see that if we select the (disconnected) setY = {(v1, v2), (v3, v4)}, then
the value of the objective function is 0. Thus, connectivity (constraint (3)), must be imp
in the formulation.

Example 4.2. Consider a treeT = (V ,E) whereV = {v1, v2, v3, v4, v5, v6, v7} andE =
{(v1, v2), (v2, v3), (v2, v4), (v2, v5), (v5, v6), (v6, v7)}. The embedding of the nodes in t
plane is given byv1 = (0,0), v2 = (5,0), v3 = (5,5), v4 = (5,−6), v5 = (25,0), v6 =
(30,0), v7 = (35,0). Let wi = 1 for i = 1, . . . ,7. We assume that servers are alre
located atS = {v2, v5} (see Fig. 3). LetL = 16 be the upper bound of the length ofY .
The optimal (conditional onS) median point solution consists of locating the facility
any point of the edge(v6, v7). However, the optimum subtreeY verifying thatL(Y ) �
16 is the tree spanned by the set of nodes toVY = {v1, v2, v3, v4}. The example can b
easily modified for the case of path facility location. For that case just consider th
S = {v1, v2, v5}.
In general, problem (CMS) is NP-hard.
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Fig. 3. Illustration of Example 4.2. Big dots are the nodes in the conditional setS.

Theorem 4.1. The conditional continuous subtree median problem is NP-hard even for
star graphs with all node weights being equal to 1.

Proof. The following partition problem can be reduced to the conditional continu
subtree model: Given integersa1, . . . , an, is there a subset of them with sum equal
A/2, whereA is the sum of all elements. Consider a star treeT = (V ,E) with V =
{v0, v1, . . . , vn} andE = {(v0, v1), . . . , (v0, vn)}. The length of(v0, vi) is 2ai . Insert an
extra node,ui , at the middle of each edge(v0, vi). The modified star will have 2n + 1
nodes, withv0 as the center of the star. The existing facility (subtree) will consist of
edges(v0, ui), i.e.,S = {v0, u1, . . . , un}. Now let the length of the new tree beA.

It is now clear that there is an optimal solution to the location problem with valueA/2
if and only if there is a solution to the above NP-hard partition problem.�
4.2. The (1+ ε)-approximation algorithm

From Table 1 we see that the unconditional median subtree problem is NP-ha
the discrete model and linearly solvable in the continuous case. Moreover, for the d
case Tamir [29] presents an(1 + ε)-approximation algorithm. From the above results
know that in the conditional case even the continuous median subtree problem is NP
Nevertheless, the fully polynomial approximation scheme in [29] can easily be mo
for both, the discrete and continuous conditional median subtree model versions of p
(CMS). For the sake of brevity we give only a short description of the modification ne
to obtain such an algorithm for the conditional discrete median subtree problem.

Given an instance of the problem and a positiveε, the algorithm generates inO(n3/ε)

time, a subtreeY such thatL(Y ) � L and F(Y ) � (1 + ε)F opt whereF opt is the op-
timal solution of problem (CMS). The approach uses the interval partitioning me
of [25]. First of all, we describe a pseudopolynomial time algorithm to solve the o
nal problem. This is done using an adaptation of the Left–Right Dynamic Program
algorithm (L-R algorithm) described in [29] for solving the unconditional discrete p
lem. To apply this algorithm to our problem we must replace the distancesd(vi, Y ) by

min[d(vi, Y ), d(vi, S)].
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we compute

Ai =
n∑

j=1

wj min
[
d(vi, vj ), d(vj , S)

]
.

We define the following terms. If(vi, vj ) is an edge, letVj,i be the set of all nodesvk such
thatvj is on the path connectingvk to vi . Define

ai,j =
∑

vk∈Vj,i

wk min
[
d(vi, vk), d(vk, S)

]
.

It is then clear that

Ai =
∑

vj : (vi ,vj )∈E

ai,j .

We next show how to compute all these terms inO(n log2 n) time. (We note that in the
unconditional case all these terms are computable inO(n) time [15]).

4.2.1. An O(n log2 n) algorithm to compute {ai,j : (vi, vj ) ∈ E}
The algorithm has two phases. In the first phase we compute, inO(n logn) total time,

all the termsai,j , wherevj is a child ofvi .
In the second phase we compute, inO(n log2 n) time, all the termsAi , vi ∈ V . With the

information from the first phase we can then also derive all the termsai,j , wherevj is the
parent ofvi , in additional linear effort.

Phase I. In the previous section we showed how to compute in linear time{d(vj , S):
vj ∈ V }. For each nodevj , if d(vj , S) � d(vj , v1), definexj = v1, otherwise, definexj to
be the unique point onP [vj , v1] such thatd(vj , xj ) = d(vj , S). It is shown in [15], that
these points can be located inO(n logn) total time. We now use a bottom-up algorith
starting at the leaves, to computeai,j whenvj is a child ofvi .

Suppose thatvi is the parent ofvj . DefineUj = {vk ∈ Vj : xk ∈ P [vk, vj ]}, andUi,j =
{vk ∈ Vj : xk ∈ P(vj , vi]}. Let

Wj =
∑

vk∈Vj

wk and W ′
j =

∑
vk∈Uj

wk.

It is clear that the total effort to compute the terms{Wj } and{W ′
j } is linear. Then

ai,j =
∑

vt∈S(vj )

aj,t +
∑

vk∈Ui,j

wk

(
d(vk, S) − d(vk, vj )

)

+ d(vj , vi)

(
Wj − W ′

j −
∑

vk∈Ui,j

wk

)
.

From the above equation we conclude that the effort to calculateai,j is proportional to
(|S(vj )| + |Ui,j |). Therefore, in addition to the effort to locate the points{xj } we need

O(n) time to complete Phase I.
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Phase II. In this phase we compute all the terms{Ai} defined above inO(n log2 n) time.
(Note that whenAi is known we can computeai,j , for the case whenvi is a child ofvj , in
O(|S(vi)|) time by the expressionai,j = Ai − ∑

vt∈S(vi )
ai,t .)

The approach is very similar to the one described in Section 2.3.1 in [15]. It is bas
divide and conquer. First we find in linear time a centroid of the tree, sayvj . From [16],
we know thatT = (V ,E) can be decomposed into two subtreesT 1 = (V 1,E1) andT 2 =
(V 2,E2), such thatV 1 ∪ V 2 = V , V 1 ∩ V 2 = {vj }, E1 ∪ E2 = E, and np = |V p| �
2(n + 1)/3, p = 1,2.

For each nodevk define

B1
k =

∑
vt∈V 1

wt min
[
d(vt , vk), d(vt , S)

]
,

B2
k =

∑
vt∈V 2

wt min
[
d(vt , vk), d(vt , S)

]
,

C1
k =

∑
vt∈V 1−{vj }

wt min
[
d(vt , vk), d(vt , S)

]
,

C2
k =

∑
vt∈V 2−{vj }

wt min
[
d(vt , vk), d(vt , S)

]
.

Then, for eachvk ∈ V 1 (vk ∈ V 2) we haveAk = B1
k + C2

k (Ak = B2
k + C1

k ). Due to the
symmetry betweenV 1 andV 2, we show only how to compute the terms{Ak} for all nodes
vk ∈ V 1.

We start by computingC2
k for all vk ∈ V 1. Let U1 = (vi(1), . . . , vi(n1)) be the ordering

of the nodes inV 1 by their distances from the centroidvj . (vi(1) = vj .) Also define

V 2∗ = {
vt ∈ V 2: d(vt , vj ) > d(vt , S)

}
and C2∗ =

∑
vt∈V 2∗

wtd(vt , S).

For eachvt ∈ V 2 − V 2∗ definect = d(vt , S) − d(vt , vj ), and let

W2 = (
vq(1), . . . , vq(n′

2)

)
be the ordering of the nodes inV 2 − V 2∗ − {vj } by the keys{ct }. (n′

2 = |V 2 − V 2∗ − {vj }|.)
The total effort needed to generateU1 andW2 is clearly dominated by the sorting, an
therefore it isO(n logn).

From the definition ofU1, we clearly have monotonicity,C2
i(1) � · · · � C2

i(n1)
. More-

over, to computeC2
i(s), for s = 1, . . . , n1, we only need to find the largest indexm = m(s),

such thatd(vq(m), vi(s)) � d(vq(m), S). (Note that the latter inequality is equivalent
d(vj , vi(s)) � cq(m). Therefore,m(s) is monotone ins.) We have

C2
i(s) = C2∗ +

∑
r�m(s)

wq(r)d(vq(r), S) +
∑

r>m(s)

wq(r)d(vq(r), vi(s)).

From the monotonicity ofm(s) it follows that the additional time needed to compu
C2

i(s) for all s = 1, . . . , n1, is O(n). We conclude that the total time to computeC2
k for
all nodesvk ∈ V 1 is O(n logn). To computeAk = B1
k + C2

k for all nodesvk ∈ V 1 it is
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now sufficient to computeB1
k for vk ∈ V 1. The latter step is done recursively on the t

T 1 = (V 1,E1). (A symmetric procedure is applied to computeAk for all vk ∈ V 2.)
To evaluate the total effort needed letC(n) denote the effort to compute the terms{Ak}

in a tree withn nodes. From the above discussion we obtain

C(n) � cn logn + C(n1) + C(n2),

wheren1 + n2 = n + 1, n1 � 2(n + 1)/3 andn2 � 2(n + 1)/3. We conclude that the tota
complexity isC(n) = O(n log2 n).

4.2.2. The approximation algorithm
We now briefly describe the pseudopolynomial time algorithm.
Sincev1 is the root ofT = (V ,E), we letv1, v2, . . . , vn be a depth-first ordering of th

nodes inV . Let D′ be some known precomputed upper bound for the objective valu
the problem (CMS). For each pair[j, t], let T ′[j, t] be the subtree ofT induced by all the
nodes with indices lower thanvj plus the nodevj , the firstt children ofvj (in order of
index) and all the descendants of theset children.

We consider first the rooted version of problem (CMS), where the selected (dis
subtree must contain the rootv1. The L-R algorithm maintains a sorted listG[j, t] of pairs
(g[j, t, l], l) whereg[j, t, l] is the optimal solution of the problem inT ′[j, t] with length
l � L andg[j, t, l] � D′. (Sinceg is a nonincreasing function ofl the ordering is well
defined). The list only contains nondominated pairs, thus its order isO(min[L,D′]). The
optimal value of problem (CMS) is given by the smallest first (g) component of a pair in
the listG[n,0].

In [29], it is proved that the time to compute a listG[j, t] from a list G[j, t − 1] is
O(min[L,D′]). (For this update step we need to add the termaj,j (t), computed in the pre
processing, to the first coordinate of each pair in the listG[j, t − 1]. vj (t) is thet th child
of vj .) Therefore, the total time to solve the problem by this algorithm isO(nmin[L,D′]).
From the results in Section 3.2.2 we can compute, inO(n logn) time, a value ofD′ that
is at mostn times the optimal value of problem (CMS). Indeed, letY ∗

c be the optimal
solution to the conditional center subtree problem, i.e., the solution to the minimax
lem. Therefore,FM(Y ∗

c ) is clearly ann-approximation for the respective median mod
which is problem (CMS). We have proved above that thisn-approximation solution ca
be found inO(n logn) time. Thus, problem (CMS) can be solved inO(nmin[L,nF opt])
time, whereF opt is the optimal value of problem (CMS).

We now sketch the fully polynomial time algorithm. LetF 0 := FM(Y ∗
c ) be then-ap-

proximation given by the minimax solution, i.e.,F 0 � nF opt.
Given a positiveε, we partition the interval[0,F 0] into 
n2/ε� consecutive intervals

each but possibly the last of length
εF 0/n2�.
The approximation algorithm follows the steps of the L-R algorithm. For each pair[j, t]

it produces a listH [j, t] of at most
n2/ε� subtrees. Each subtreeY will be recorded by the
pair (F (Y ),L(Y )). The algorithm terminates with the final listH [n,0] that corresponds t
the leaf nodevn.

The claim is that if(F ∗,L∗), associated with the subtreeY ∗, belongs to the listH [n,0]
and is such thatF ∗ is the smallestF coordinate (the first coordinate of the pairs(F, l)),

thenY ∗ is a(1+ ε)-approximation solution, i.e.,F ∗ � (1+ ε)F opt.
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Considering the (exact) pseudopolynomial algorithm, we note that there are onlyO(n)

subproblems[j, t] and listsG[j, t]. Tamir [29] proved that if a listG[j, t] is processed
in the kth step of the algorithm and(F (Y ),L(Y )) is one of the entrees of the list whic
is relevant for the optimal solution, then it is represented by some pair(F, l) in the list
H [j, t] where|F(Y ) − F | � kεF 0/n2 andL(Y ) � l. (At each step of the algorithm a
additive error termεF 0/n2 is introduced.)

Therefore, for any pair(F, l) in the listH [n,0] we have|F − F opt| � nεF 0/n2. Since
F 0 � nF opt we conclude thatF � F opt(1+ ε).

The above approach gives anO(n3/ε) time algorithm to obtain a(1+ε)-approximation
solution to problem (CMS), where the selected subtree is rooted atv1. This implies that
the naive implementation to solve the unrooted version should solven rooted subproblems
The total complexity would beO(n4/ε).

Again, following [29] there is a better implementation following a divide and conq
approach. Suppose without loss of generality thatv1 is a centroid ofT . If v1 is not included
in the optimal subtree, it is included in a component having at mostn/2 nodes. Hence, i
is sufficient to approximate the problem where the optimal subtree must includev1, and
then make recursive calls to problems of size at mostn/2 + 1. This analysis implies tha
the overall effort of obtaining a(1+ ε)-approximation for the unrooted version of proble
(CMS) is againO(n3/ε).

4.3. The conditional median path problem

Table 3 summarizes the best known results for unconditional median path problem
the problems with a constraint on the length of the path, Alstrup et al. [1] give subqua
algorithms. We will next give alternative short descriptions of slightly inferior algorith
for the sake of completeness. These algorithms use some preprocessing presentin
lier sections. Then, we extend the algorithms to the conditional cases.

4.3.1. An O(n logn) algorithm for the discrete unconditional median path with a length
constraint

We use a divide and conquer approach. First we find, in linear time, a centroid
tree, sayvj . From [16], we know thatT = (V ,E) can be decomposed into two subtre
T 1 = (V 1,E1) andT 2 = (V 2,E2), such thatV 1∪V 2 = V , V 1∩V 2 = {vj }, E1∪E2 = E,
andnp = |V p| � 2(n + 1)/3, p = 1,2.

If an optimal path does not contain the centroidvj , then it must be included either inT 1

or in T 2. Therefore, we can use a divide and conquer scheme. Find the best path con
nodes in bothV 1 − {vj } andV 2 − {vj }. Then, recursively find the best path contained
T 1 and the best path contained inT 2.

We start with a preprocessing phase described in [16], and modified by Freder
and Johnson [10]. In this phase we find a centroid decomposition of the tree into a
sequence of subtrees. For each subtreeT ′ in this decomposition we compute recursive
and sort the distances from its centroid, sayv′ to all other nodes ofT ′. The total time

needed for this phase isO(n logn).
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Suppose now thatvj is a centroid of the original tree. Our task is to find the best p
containing nodes in bothV 1 − {vj } andV 2 − {vj }. For each nodevk ∈ V 1 (vk ∈ V 2) let

A1
k =

∑
vt∈V 1

wtd
(
vt ,P [vj , vk]

) (
A2

k =
∑

vt∈V 2

wtd
(
vt ,P [vj , vk]

))
.

Note, thatA1
k (A2

k) is the sum of the weighted distances of all the nodes inV 1 (V 2) from
the pathP [vj , vk], connecting the centroidvj with vk . In linear time we compute{A1

k} and
{A2

k}, using the following equations.
If vk is a node adjacent tovt on the path connecting the centroidvj to vt in V 1 then,

A1
t = A1

k − ak,t + At − at,k.

Similarly, if vk is a node adjacent tovt on the path connecting the centroidvj to vt in V 2

then,

A2
t = A2

k − ak,t + At − at,k.

Let U1 = (vi(1), . . . , vi(n1)) be the ordering of the nodes inV 1 by their distances from th
centroidvj . Let U2 = (vq(1), . . . , vq(n2)) be the ordering of the nodes inV 2 by their dis-
tances from the centroidvj . In particularvi(1) = vq(1) = vj . We are now ready to compu
the best discrete path of length not exceedingL which contains nodes in bothV 1 − {vj }
andV 2 − {vj }.

It is sufficient to find, for each nodev in U1, the best path, whose length is at mosL

which hasv as one of its endpoints. We start withvi(n1). If d(vj , vi(n1)) > L, there is no
such path. Otherwise, find the largest indext = t (n1), such thatd(vq(t), vi(n1)) � L, and
d(vq(t+1), vi(n1)) > L. Set

αi(n1) = A1
i(n1)

+ min
s=1,...,t (n1)

A2
q(s),

whereαi(n1) is the value of the best path which hasvi(n1) as one of its endpoints. Next w
proceed withvi(n1−1), and find the largest indext = t (n1−1) such thatd(vq(t), vi(n1−1)) �
L, andd(vq(t+1), vi(n1−1)) > L. It is clear thatt (n1) � t (n1 − 1). We then set

αi(n1−1) = A1
i(n1−1) + min

s=1,...,t (n1−1)
A2

q(s).

Continuing with vi(n1−2) etc., in linear time we compute all the termsαi(r), for r =
1, . . . , n1. We conclude that the objective value of the best discrete path of le
not exceedingL which contains nodes in bothV 1 − {vj } and V 2 − {vj } is given by
minr=1,...,n1 αi(r).

In the recursive step we now have to find the best path contained inT 1 (T 2). (Due
to symmetry we show only how to compute the path contained inT 1.) Consider a node
vt ∈ V 2. If P is some path contained inT 1, thenwtd(vt ,P ) = wtd(vt , vj ) + wtd(vj ,P ).
Therefore, in order to solve the problem where the path is restricted toT 1, it is sufficient
to replace the weight ofvj by

∑
vt∈V 2 wt , remove all the nodes inV 2 − {vj } from T ,

and solve the problem on the remaining subtree, i.e.,T 1. (Of course, we need to add th
constant

∑
vt∈V 2 wtd(vt , vj ) to the objective value of the restricted problem, to get the
objective value amongst all discrete paths contained inT 1.)
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To evaluate the total effort needed to solve the problem recursively, letC(n) denote the
effort to compute the unconditional discrete median path of length not exceedingL in a
tree withn nodes. We obtain

C(n) � cn + C(n1) + C(n2),

wheren1 + n2 = n + 1, n1 � 2(n + 1)/3 andn2 � 2(n + 1)/3. We conclude that the tota
complexity isC(n) = O(n logn).

4.3.2. An O(n log2 n) algorithm for the continuous unconditional median path with a
length constraint

To solve the continuous median path problem we first recall that there is an op
path such that one of its endpoints is a node. Using this property we can apply the
approach used for the discrete path. Given the notation of the previous section, w
need to show how to find the best path of length not exceedingL which contains a node i
V 1 − {vj } (V 2 − {vj }), and some point which is notvj in T 2 (T 1). Due to symmetry we
will consider only the paths which have a node inV 1 as one of their endpoints.

Consider the set{A2
q(s)}, s = 1, . . . , n2. Let P be a path with an endpoint at some no

vk ∈ V 1. Its other endpoint is at a pointxi,m on an edge(vi, vm) in T 2. (Suppose thatvi is
on the path connectingvm to the centroidvj .) It is easy to see that the objective value
the pathP is

A1
k + A2

i − (
A2

i − A2
m

)(
d(vi, xi,m)

/
d(vi, vm)

)
.

Hence, the objective value ofP varies linearly with the location of its endpointxi,m on
(vi, vm). Moreover, consider a pathP [vj , vt ] connecting the centroidvj with some leaf
nodevt in V 2. If yj,t is a point on this path, andP is a path withvk ∈ V 1 andyj,t as
its two endpoints, the objective value ofP is a monotone piecewise linear convex fun
tion of the location ofyj,t on this path. The breakpoints of this function are the no
of P [vj , vt ]. Specifically, there is a piecewise linear functionfj,t (y), of a real parame
ter y, 0 � y � d(vj , vt ) such that for each nodevk ∈ V 1, and a pointx on P [vj , vt ]
satisfyingd(x, vj ) = y, the objective value of the pathP [vk, x] is A1

k + fj,t (y). (Note
thatfj,t (0) = A2

j andfj,t (d(vj , vt )) = A2
t .) For convenience, we extend the definition

fj,t (y) for all nonnegative values ofy, by definingfj,t (y) = A2
t for all y � d(vj , vt ). Let

V 2∗ be the set of leaves ofV 2. Define

F(y) = min
vt∈V 2∗

fj,t (y).

Since the total number of breakpoints of all the functions{fj,t } is at mostn2, it is known
that the total number of breakpoints ofF is at mostO(n2α(n2)), whereα(n2) is the inverse
of the Ackermann function (see [26]). Moreover, the sequence of breakpoints ofF can be
generated inO(n2 logn2) time (see [14]).

We are now ready to compute, for each nodevk ∈ V 1, the best path whose length is
mostL, which has one of its endpoints atvk and the other at some point inT 2. By the
above analysis the objective value of such a path is( )
A1
k + F L − d(vk, vj ) .
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F(L − d(vk, vj )) can be computed inO(logn2) time by applying a binary search over t
breakpoints ofF . We now conclude that inO(n logn) time we can find the best path
length not exceedingL, which contains a node inV 1 − {vj } (V 2 − {vj }) and some point
which is notvj in T 2 (T 1).

As in the previous section we continue recursively with the subtreesT 1 andT 2. To
evaluate the total effort needed to solve the problem recursively, letC(n) denote the effor
to compute the unconditional continuous median path of length not exceedingL in a tree
with n nodes. We obtain

C(n) � cn logn + C(n1) + C(n2),

wheren1 + n2 = n + 1, n1 � 2(n + 1)/3 andn2 � 2(n + 1)/3. We conclude that the tota
complexity isC(n) = O(n log2 n).

In the next subsections we describe efficient algorithms for the conditional mode
start with theO(n log2 n) preprocessing phase, mentioned in the previous section, w
we compute the terms{ai,j } for all edges(vi, vj ).

4.3.3. An O(n log2 n) algorithm for the conditional median path problem with no length
constraint

When there is no length constraint, the conditional median path is a path connecti
leaves of the tree. Indeed, this problem can be solved inO(n) time after all the terms{ai,j }
have already been computed inO(n log2 n) time. The approach is similar to that of [2
Specifically, for each nodevi , we compute the optimal median path, which hasvi as one of
its endpoints, and is contained inVi . Let Bi denote the objective value of such an optim
path. Then recursively we have the following: Ifvi is a leaf thenBi = Ai . Otherwise,

Bi = Ai + min
vj ∈S(vi )

[Bj − aj,i − ai,j ].

Finally to find the conditional (discrete) optimal median path with no length constr
for each nodevi we compute the best path, which is contained inVi , and containsvi . Let
Ci denote the objective value of such a path. Then we have the following: Ifvi is a leaf then
Ci = Bi . If vi has only one child then againCi = Bi . Suppose that|S(vi)| � 2. Consider
the set{Bj − ai,j − aj,i : vj ∈ S(vi)}. Let j (1) andj (2) be the indices corresponding
the two smallest entries in this set. Then it is easy to see that

Ci = Ai + Bj(1) − aj (1),i − ai,j (1) + Bj(2) − aj (2),i − ai,j (2).

The objective value of the conditional optimal median path without length constra
then minvi∈V Ci . We therefore conclude that the conditional median path problem wit
length constraint can be solved inO(n log2 n) time.

4.3.4. An O(n log2 n) algorithm for the discrete conditional median path problem with a
length constraint

We show how to adapt theO(n logn) algorithm from Section 4.3.1, which solves t
respective unconditional model. We assume that all the{ai,j } coefficients have alread

been computed. We follow the notation in Section 4.3.1. Suppose now thatvj is a centroid
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of the original tree. Our task is to find the best path containing nodes in bothV 1 −{vj } and
V 2 − {vj }. For each nodevk ∈ V 1 (vk ∈ V 2) let

A1
k =

∑
vt∈V 1

wt min
[
d
(
vt ,P [vj , vk]

)
, d(vt , S)

]
(

A2
k =

∑
vt∈V 2

wt min
[
d
(
vt ,P [vj , vk]

)
, d(vt , S)

])
.

Note, thatA1
k (A2

k) is the sum of the weighted distances of all the nodes inV 1 (V 2) from
P [vj , vk] ∪ S, whereP [vj , vk] is the path connecting the centroidvj with vk . In linear
time we compute{A1

k} and{A2
k}, using the following equations: LetV 1

j (V 2
j ) be the subse

of V 1 (V 2) consisting of all the nodes adjacent to the centroidvj in V 1 (V 2). Then,

A1
j =

∑
vt∈V 1

j

aj,t and A2
j =

∑
vt∈V 2

j

aj,t .

If vk is a node adjacent tovt on the path connecting the centroidvj to vt in V 1 then,

A1
t = A1

k − ak,t + At − at,k.

Similarly, if vk is a node adjacent tovt on the path connecting the centroidvj to vt in V 2

then,

A2
t = A2

k − ak,t + At − at,k.

Using the above expressions we proceed exactly as in Section 4.3.1, and find in line
the objective value of the best discrete conditional median path of length not exceedL,
which contains nodes in bothV 1 − {vj } andV 2 − {vj }.

In the recursive step we now have to find the best path contained inT 1 (T 2). (Due to
symmetry we show only how to compute the path inT 1.) We augment a nodev0 to V 1

and connect it with an edge to the centroidvj . We defineaj,0 = A2
j , and solve the problem

recursively on the augmented treeT 1. As in Section 4.3.1 the complexity of the recurs
algorithm isO(n logn). However, in the conditional model the preprocessing phas
computing{ai,j } takesO(n log2 n) time and determines the total complexity.

4.3.5. An O(n2) algorithm for the continuous conditional median path problem with a
length constraint

At this stage we still do not know how to apply the above divide and conquer app
to the continuous conditional median path problem. Specifically, it is not clear to us
to aggregate the data fromT 2 (T 1) into the centroid and decompose the problem into
“independent” subproblems onT 1 andT 2.

Instead, we use a direct approach to obtain anO(n2) algorithm. Since we know how
to compute the best discrete path of length not exceedingL, in O(n log2 n) time, we can
assume, without loss of generality, that there exists an optimal almost discrete pathP for
the continuous problem, whose length is exactlyL, and one of its endpoints, sayx, is not a
node. To obtain a quadratic time algorithm it is sufficient to restrictx to a given edge, an

show how to get the best path with one endpoint on this edge in linear time.
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First, we need some preprocessing. For each nodevk define

Xk = {
x ∈ A(T ): d(vk, x) = d(vk, S)

}
.

Let X = ⋃n
k=1 Xk . Note that|X| = O(n2). It is shown in [15] how to compute the poin

in X, and locate and sort them on the respective edges, inO(n2) time. We also comput
and sort the distances from each node to all other nodes. This can also be perfor
O(n2) time, as shown in [15].

We now consider an individual edge(vi, vj ), and show how to find the best median p
with an endpointx, on this edge. (To simplify the notation we assume thatx = d(x, vj ).)
Let Xi,j denote the sorted list of all points ofX on (vi, vj ). We also augment the nod
vi and vj to this list. As above we letVi,j (Vj,i ) be the set of nodes in the connect
component containingvi (vj ), obtained by removing the edge(vi, vj ). For eachx on
(vi, vj ) we define

gi,j (x) =
∑

vt∈Vi,j

wt min
[
d(x, vt ), d(vt , S)

]
.

As noted,gi,j (x) is a monotone, piecewise linear and concave function with breakp
at Xi,j . It is clear that inO(n) total time we can computegi,j (y), andgj,i(y), for all
y ∈ Xi,j . Let x be a point on(vi, vj ). It is sufficient to look only at paths of the typ
P [vk, x] of length L, wherevk ∈ Vj,i . For such a path the objective value is a pie
wise linear concave function ofx. Its breakpoints are inXi,j . Similar to the notation in
Section 4.3.4 we defineAk,j = ∑

vt∈Vj,i
wt min[d(vt ,P [vk, vj ]), d(vt , S)]. As explained

there, in linear time we can compute these terms for allvk ∈ Vj,i . The objective value of a
pathP [vk, x] is equal toAk,j + gi,j (x), whered(vk, vj ) + x = L.

Next we letZj,i = (vk(1), . . . , vk(nj,i )) be the ordering of the nodes inVj,i by their dis-
tances fromvj . (vk(1) = vj , andnj,i = |Vj,i |.) Finally, by scanningZj,i and the sequenc
of breakpointsXi,j we compute inO(n) time the objective values of all paths of lengthL

which have one endpoint inVj,i and the other end on(vi, vj ).
We conclude that the total time to solve the continuous conditional median path pr

with a length constraint isO(n2).

5. Final comments

We conjecture that the complexities of the algorithms for the conditional median
problems presented above can be further improved by using the data structures
mented by Alstrup et al. [1] to solve the unconditional versions of these models. Thi
be a subject of future research.
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